2.2.Спектральное распределение энергии излучения
Стандартное спектральное распределение энергии суммарной радиации, установленное для этого испытания согласно рекомендациям Международной комиссии по освещению, приведено в МЭК 68-2-5 (ГОСТ 28202). Если интерес представляет только тепловое воздействие солнечной радиации, то допускается применение вольфрамовых ламп накаливания.
В связи с тем, что спектральное распределение энергии излучения вольфрамовых ламп накаливания значительно отличается от распределения энергии в солнечном спектре (см. рис.2), интенсивность излучения следует устанавливать в соответствии с требованиями п.2.3.
2.3.Интенсивность излучения, требуемая в случае распределения энергии, отличного от стандартного
Если источник, применяемый для испытания, излучает энергию, спектральное распределение которой не соответствует стандартному, приведенному в МЭК 68-2-5 (ГОСТ 28202) (например в случае использования вольфрамовых ламп накаливания, применение которых допустимо, если испытание имеет целью только определение результатов теплового воздействия), то интенсивность излучения устанавливается такая, при которой тепловой эффект эквивалентен тепловому эффекту при облучении испытуемого образца суммарной солнечной радиацией.
Следовательно, поглощенное излучение искусственного источника должно быть равно величине суммарной солнечной радиации, т.е.
,
где - интенсивность излучения искусственного источника, кВт/м ;
- коэффициент поглощения образцом излучения искусственного источника;
- коэффициент поглощения образцом солнечной радиации (см. приложение А).
3.МЕТОД И ПРОДОЛЖИТЕЛЬНОСТЬ ИСПЫТАНИЯ
3.1.Следует принять решение относительно продолжительности облучения, его непрерывности или периодичности. При этом предусматривают три возможных метода испытания:
Метод А
24-часовой цикл состоит из 8-часовой фазы облучения и 16-часовой темной фазы. Количество циклов - по необходимости. (Это обеспечивает получение дозы облучения 8,96 кВт/м за цикл, что приближается к наиболее жестким естественным условиям. Метод А применяют при определении результатов теплового воздействия.)
Метод В
24-часовой цикл состоит из 20-часовой фазы облучения и 4-часовой темной фазы. Количество циклов - по необходимости. (Это обеспечивает получение дозы облучения 22,4 кВт/м за дневной цикл. Метод В применяют, когда основной целью испытания являются исследования процессов деградации.)
Метод С
Непрерывное облучение применяют согласно требованиям соответствующей НТД (это упрощенное испытание применяют, когда циклические тепловые нагрузки не учитывают и оценивают только фотохимический эффект. Его применяют также для определения тепловых воздействий на образцы с малой теплоемкостью).
3.2.Интенсивность излучения, установленная для испытания, равна 1,120 кВт/м ±10%. Сокращение длительности испытания за счет увеличения интенсивности излучения сверх указанного значения нежелательно. Как уже упоминалось, суточная доза солнечной радиации, приближенно соответствующая наиболее жестким естественным условиям, имитируется применением метода А с выдержкой в стандартных условиях облучения в течение 8 ч в сутки. Таким образом, удлинение фаз облучения свыше 8 ч ускоряет воздействие радиации по сравнению с естественными условиями. Однако непрерывное 24-часовое облучение (метод С) может не выявить явлений деградации, обусловленных циклическими тепловыми нагрузками, поэтому этот метод не может быть рекомендован для всех случаев.
3.3.Продолжительность испытания зависит от цели испытания. Если интерес представляют только тепловые эффекты, то должно быть достаточно трех циклов (за исключением тех случаев, когда испытывают крупногабаритную аппаратуру, которая требует больше времени для достижения максимальной внутренней температуры). Для выявления процессов деградации необходимо увеличение продолжительности испытания.
4.ДРУГИЕ УЧИТЫВАЕМЫЕ ВНЕШНИЕ ФАКТОРЫ
4.1.Температура воздуха в камере
Температура воздуха в камере во время облучения и в течение темных фаз должна контролироваться на соответствие требованиям, установленным в методах А, В или С. В соответствующей НТД следует указать температуру во время облучения: 40 °С или 55 °С, в зависимости от предполагаемых условий эксплуатации аппаратуры или элементов.
4.2.Влажность
Различные условия влажности, особенно конденсация, могут значительно повлиять на фотохимические процессы деградации материалов, красок, пластмасс и т.д. Конкретные значения относительной влажности должны быть указаны в соответствующей НТД на изделие, например может быть предписано 4-часовое воздействие влажного тепла ((40±2) °С и (93±3)% относительной влажности) в начале испытания в соответствии с методом В.
4.3.Поверхностные загрязнения
Пыль и другие поверхностные загрязнения могут значительно изменить характеристики поглощения облучаемых поверхностей. Если нет иных указаний, испытуемые образцы должны иметь чистые поверхности. Если требуется оценить влияние загрязнения поверхности, в соответствующую НТД следует включать необходимые сведения о подготовке поверхностей образцов и т.п.
4.4.Озон и другие посторонние газы
Озон, образующийся при воздействии коротковолнового ультрафиолетового излучения источников света, обычно изолирован от рабочего объема испытательной камеры светофильтрами, используемыми для корректировки спектрального распределения энергии. Поскольку озон и другие посторонние газы могут оказывать значительное влияние на процессы деградации некоторых материалов, важно, чтобы эти газы отсутствовали в испытательной камере, если нет иных указаний в соответствующей НТД (см. п.9.3).
4.5.Скорость воздуха
Следует учитывать возможность охлаждения образцов под действием воздушного потока. Охлаждающее действие воздушного потока может также привести к получению ошибочных результатов измерений при помощи термоэлементов открытого типа, применяемых для контроля интенсивности излучения. Даже такая сравнительно малая скорость воздуха, например 1 м/с, может вызвать понижение температуры перегрева более чем на 20%. Поэтому необходимо измерять и контролировать скорость воздушного потока (которая должна быть минимальной) при одновременном контроле заданной температуры и влажности (если это требуется). Регулирование температуры воздуха в рабочем объеме камеры путем соответствующего нагрева и охлаждения стенок камеры устраняет необходимость в больших скоростях воздуха.
В действительности условия солнечной радиации высокой интенсивности редко сочетаются с полным безветрием. Поэтому необходимо учитывать воздействие на испытуемые аппаратуру и элементы потоков воздуха с различными скоростями. В этом случае в соответствующей НТД следует устанавливать конкретные требования.
4.6.Опорное основание, установочное положение
Поскольку тепловые свойства опорного основания и способ монтажа могут значительно влиять на температуру перегрева испытуемого образца, эти факторы необходимо учитывать, чтобы теплообмен был характерен для типичных условий эксплуатации. Образец обычно требуется устанавливать либо на стойках, либо на основании с определенным свойствами, например на слое бетона заданной толщины или на слое песка с определенной теплопроводностью. Подробные сведения относительно опорного основания, способа монтажа и положения образца должны быть приведены в соответствующей НТД (см. приложение В).
5.ИСТОЧНИК ИЗЛУЧЕНИЯ
5.1.Общие положения
Источник излучения может состоять из одной или нескольких ламп и связанных с ними оптических элементов, например рефлекторов, светофильтров и т.п., обеспечивающих получение требуемого спектра и заданной интенсивности излучения.
Ксеноновая газоразрядная лампа высокого давления, снабженная светофильтрами, может обеспечить наилучшую имитацию солнечной радиации. Ртутные и ксеноново-ртутные лампы в отношении имитации солнечной радиации имеют серьезные недостатки, которые могут привести к ошибочным результатам. Дуговые лампы с электродами из угля с добавлением специальных примесей имеют широкое применение, однако вследствие недостаточной стабильности и сложности в эксплуатации сфера их использования ограничена. Могут использоваться вольфрамовые лампы накаливания, если целью испытания является только оценка тепловых явлений. Однако эти лампы позволяют оценить фотохимический эффект, так как в спектре их излучения ультрафиолетовая часть почти полностью отсутствует.
Характеристики этих ламп, особенности светофильтров, оптических устройств и т.п. рассматриваются далее.
5.2.Ксеноновые лампы
Геометрическая форма и размер применяемых ламп определяются требованиями испытания. Типичный спектральный состав излучения ксенонового разрядного промежутка приведен на рис.1.
Сравнение излучения типичной ксеноновой дуговой лампы высокого давления
с кривыми спектрального распределения солнечного излучения для воздушных масс 0-1 и 2
389 × 422 пикс.   Открыть в новом окне |
________________
* На рис.1 и 2 условная толщина воздушной массы, сквозь которую проходит солнечное излучение, обозначена буквой М. Условная толщина воздушной массы различна для разных углов ( ) положения Солнца (М=1 - Солнце в зените; М=2 при 60°).
Рис.1
Следует учитывать также излучение раскаленных электродов. Относительная энергия этого излучения при коротких разрядных промежуточных значительно больше, чем при длинных, и она может существенно отразиться на имитации спектра, поскольку доля инфракрасного излучения электродов больше доли инфракрасного излучения разрядного промежутка. Установлено, что относительный спектральный состав излучения ксенонового разрядного промежутка практически не зависит от мощности лампы. У ламп с различной мощностью температура электродов будет различной, а следовательно, будет различен и спектральный состав их излучения. При использовании ламп с длинными разрядными промежутками излучение электродов можно легко сделать незначительным в общем балансе. Конструктивные особенности ламп с короткими разрядными промежутками обусловливают значительно более широкие производственные допуски, чем у ламп с длинными разрядными промежутками. Это особенно важно учитывать при замене ламп.
Все типы ламп нуждаются в периодической замене, поскольку их интенсивность излучения постоянно уменьшается с течением времени и в процессе эксплуатации интенсивность излучения может меняться у разных ламп по-разному. Несмотря на изменение интенсивности излучения в процессе эксплуатации относительный спектральный состав излучения ксенонового разрядного промежутка остается практически неизменным, так как ксенон является безпримесным чистым элементным газом.
5.3.Вольфрамовые лампы накаливания