Свод правил СП 274.1325800.2016 "Мосты. Мониторинг технического состояния" (утв. приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 16 декабря 2016 г. N 967/пр) стр. 10

Проведение динамического мониторинга

Б.1 Цель проведения измерений в процессе вибродиагностики моста - получение инструментальной информации, которая в максимальной степени характеризует его техническое состояние. Наиболее полный вид информации, получаемый при проведении динамической диагностики мостов, - АФЧХ динамического прогиба, м/тс, (метр прогиба на тонну динамического усилия). Эта передаточная функция является целевой, как при разработке МКЭ-моделей сооружений, так и при проведении работ на мосту. Матрица передаточных функций для множества точек позволяет получать достаточно полную информацию о спектре форм колебаний (мод), которыми обладает конкретное сооружение в текущем состоянии, и является динамическим паспортом моста.
Б.2 Последовательность чередования форм колебаний, их частотные диапазоны и амплитуды колебаний информационно-значимых точек сооружения, функционально зависят от факторов, приведенных ниже:
- параметры, определяющие прочность элементов сооружения;
- особенности расчетных схем работы, как сооружения в целом, так и его узлов, включая фактическую схему взаимодействия с основаниями;
- состояние элементов соединений (узлов);
- наличие конструктивных, технологических или эксплуатационных дефектов;
- климатические условия;
- другие факторы, устанавливаемые в процессе работы.
Б.3 При разработке схемы измерений следует учитывать конструктивные особенности исследуемого моста и расчетные условия взаимодействия его конструктивных элементов. Основные факторы, влияющие на разработку схемы измерений:
- мостовое сооружение - достаточно сложная пространственная конструкция, которая обладает индивидуальной частотно-зависимой последовательностью пространственных (трехмерных) форм собственных колебаний;
- взаимодействие конструктивных частей моста определяется схемой заделки, неподвижного и подвижного шарнирного соединения;
- большинство несущих конструктивных элементов моста могут рассматриваться, как композитные;
- влияние грунтов основания и насыпей подходов на расчетную схему работы сооружения;
- наличие видимых и невидимых дефектов в элементах моста.
Это приводит к тому, что при разработке схемы проведения измерений, необходимо предусматривать возможность поэтапного исследования особенностей работы сооружения, с тем, чтобы экспериментальные данные каждого этапа измерений могли дополнять друг друга и составлять обитую картину динамического отклика сооружения. Все этапы этого исследования могут выполняться в произвольной последовательности, рекомендуемая последовательность приводится ниже.
1-й этап измерений проводится с проезжей части. Измерения выполняются на всех пролетных строениях моста. Эти данные наиболее доступны, как не требующие предварительной подготовки или наличия обустройств, в виде смотровых подмостей, лестниц и т.д. С другой стороны, при проведении работ на проезжей части моста должны предусматриваться измерения не только в плоскости действия основных постоянных и временных нагрузок, но и в поперечном и продольном направлениях, которые позволяют оценить жесткость сооружения в горизонтальной плоскости и жесткость на кручение и сделать предварительные выводы о продольной или поперечной жесткости опор и работоспособности опорных частей, степени заклинивания береговых пролетных строений со стороны насыпей подходов. Для более полной оценки работоспособности пролетных строений, измерения должны проводиться по каждому продольному силовому элементу (балка, ферма), а также в промежуточных точках (плита проезжей части, консоль тротуара и т.д.) по нескольким сечениям. Число исследуемых сечений определяется наличием и преобладанием асимметричных (в продольном направлении) форм собственных колебаний пролетных строений. Наличие в спектре отклика сооружения таких форм колебаний определяется по данным постановочного эксперимента или при анализе предварительной МКЭ-модели.
2-й этап измерений, в зависимости от особенностей конструкции моста, проводится на элементах нижнего пояса силовых конструкций пролетных строений, ригелях и насадках опор, элементах опорных частей, опорах и т.д.
3-й этап измерений, в случае необходимости, проводится для решения частных задач, если проведенный комплекс измерений недостаточен.
Режимы нагружения (для активной вибродиагностики)
Б.4 Режим нагружения определяется следующими основными параметрами:
- частотным диапазоном, в котором проявляются наиболее низкочастотные формы собственных колебаний сооружения. Необходимый частотный диапазон может быть определен на основе анализа предварительной МКЭ-модели моста или опытным путем;
- амплитудой вынуждающего усилия, передаваемого на исследуемое сооружение для возбуждения в нем определенной последовательности чередования форм колебаний. Амплитуда вынуждающего усилия определяется опытным путем и должна быть достаточной для подавления шумового (фонового) воздействия. По двум-трем испытаниям с последовательным увеличением амплитуды воздействия можно судить о линейности работы пролетного строения;
- продолжительностью воздействия, определяемой опытным путем и зависящей от длины и массы пролетных строений, вовлеченных в процесс колебаний, а также от значения фонового воздействия;
- точкой установки возбудителя колебаний на пролетном строении. В большинстве случаев это геометрический центр проезжей части, но при преобладании асимметричных форм колебаний пролетного строения, это может быть 1/4 длины пролета или другая точка, что определяется по предварительной МКЭ-модели или опытным путем.
Б.5 Математический анализ отклика сооружения проводится в несколько взаимосвязанных этапов
На этапе предварительного моделирования разрабатываются МКЭ-модели пролетных строений, для этого используется проектная документация или результаты обмеров. Цель этого этапа - получение последовательности собственных форм колебаний пролетного строения, которые применяются для разработки программы измерений и режимов нагружения.
Адаптация МКЭ-модели сооружения осуществляется на основе экспериментальных данных, полученных после проведения динамической диагностики, осмотра сооружения и установления причин различия теоретических и экспериментальных данных. Основными причинами могут быть:
- изменение расчетной схемы работы сооружения (заклинивание опорных частей, неравномерное опирание балок пролетного строения, нарушение взаимодействия пролетных строений с насыпями подходов, неразрезность слоев дорожной одежды между пролетами и т.д.);
- особенности работы опор, фундаментов и оснований;
- климатические условия проведения испытаний.
Адаптация достигается исследованием количественной оценки отдельных факторов на несоответствие теоретических и экспериментальных данных, затем методом последовательных итераций проводится адаптация МКЭ-модели сооружения по экспериментальным данным.
В процессе итерационной адаптации проводится усложнение предварительной модели - введение в модель всех пролетных строений, опор, фундаментов и оснований. В конечном итоге разрабатывается полномасштабная математическая модель сооружения.
Конечная цель адаптации МКЭ-модели - получение матрицы теоретических передаточных АФЧХ динамических прогибов, соответствующей матрице АФЧХ, полученной при проведении экспериментальных работ на мосту.
Оценка грузоподъемности моста проводится с учетом действующей нормативной базы. Для этих целей адаптированная МКЭ-модель сооружения изменяется для соблюдения условий проведения расчета по 1-му или 2-му предельному состоянию.
Одновременно производится оценка факторов, повлиявших на изменение расчетной схемы работы моста и его отдельных элементов. Факторы, снижающие несущую способность, сохраняются, а повышающие несущую способность, исключаются из МКЭ-модели.
Учитывается нормативное или фактическое значение динамического коэффициента для подвижных нагрузок.

Библиография

[1] Методика оценки и сертификации инженерной безопасности зданий и сооружений
[2] Федеральный закон от 26 июня 2008 г. N 102-ФЗ "Об обеспечении единства измерений"
[3] "Методические рекомендации по вибродиагностике автодорожных мостов", утверждены распоряжением Минтранса РФ от 7 августа 2001 г. N 266-р
[4] ВСН 4-81 "Инструкция по проведению осмотров мостов и труб на автомобильных дорогах", утверждена Минавтодором РСФСР 31 марта 1981 г.
[5] ОДН 218.017-03 "Руководство по оценке транспортно-эксплуатационного состояния мостовых конструкций", утверждено распоряжением Минтранса России от 26 марта 2003 г. N ОС-198-р
[6] СН 2.2.4/2.1.8.566-96 "Производственная вибрация. Вибрация в помещениях жилых и общественных зданий", утверждены постановлением Госкомсанэпиднадзора России от 31 октября 1996 г. N 40
[7] СНиП 12-03-2001 Безопасность труда в строительстве. Часть 1. Общие требования
[8] СНиП 12-04-2002 Безопасность труда в строительстве. Часть 2. Строительное производство
[9] ВСН 37-84 "Инструкция по организации движения и ограждению мест производства дорожных работ", утверждена Минавтодором РСФСР 5 марта 1984 г.
[10] Правила дорожного движения, утверждены постановлением Правительства Российской Федерации от 23 октября 1993 г. N 1090
[11] "Правила по охране труда при работе на высоте", утверждены Приказом Минтруда России от 28 марта 2014 г. N 155н
[12] ПУЭ Правила устройства электроустановок