- мосты, расположенные на кривых в плане;
- мосты с косыми в плане пролетными строениями;
- мосты с периодом собственных колебаний в горизонтальной плоскости более 1,5 с;
- все объекты класса сейсмостойкости I.
8.2.25 Антисейсмические устройства необходимо применять для предотвращения обрушения пролетных строений на грунт, предупреждения разрушения главных балок при их подбрасывании с последующим падением на площадки опирания, смягчения ударов пролетных строений в выступающие части опор, сохранения работоспособности опорных частей и деформационных швов, уменьшения сейсмической нагрузки от масс, регулирования усилий и перемещений в системе моста при сейсмическом воздействии.
8.2.26 В качестве антисейсмических устройств следует применять работающие на поперечную нагрузку жесткие ограничители горизонтальных перемещений пролетных строений (стопоры), растягиваемые сейсмической нагрузкой элементы (анкеры), смягчающие удары смежных конструкций (буферы), ограничивающие относительные перемещения концов соседних пролетных строений связи (сцепные устройства), поглощающие энергию колебаний демпферы, изменяющие жесткость и распределение усилий в системе амортизаторы и прерыватели колебаний (приложение А).
8.2.27 Опоры балочных мостов в сейсмических районах следует преимущественно проектировать в виде монолитных, сборных и сборно-монолитных железобетонных конструкций столбчатого или рамного типа, а также в виде опор-стенок. Размеры поперечных сечений и армирование опор определяются по расчету. В качестве арматуры следует применять стержни из арматурной стали, допускающей развитие пластических деформаций в узлах, стойках и ригелях рам.
8.2.28 При проектировании пилонов висячих и вантовых мостов, опор виадуков допускается предусматривать применение стальных конструкций.
8.2.29 В районах сейсмичностью 7 и 8 баллов могут использоваться монолитные бетонные опоры и сборно-монолитные бетонные опоры с дополнительными антисейсмическими конструктивными элементами, обеспечивающими надежное соединение облицовочных блоков между собой и с монолитным ядром опоры, а также связь тела опоры с плитой фундамента и оголовком опоры.
8.2.30 При проектировании железобетонных опор необходимо предусматривать обязательное конструктивное армирование плит свайных ростверков, массивных фундаментов мелкого заложения, непрерывное вертикальное армирование колонн высотой до 9 м и отнесение стыка арматуры колонн высотой более 9 м не менее чем на 3 м от верхней грани фундаментной плиты.
8.2.31 В случаях применения опор из железобетонных конструкций столбчатого типа в виде пустотелых оболочек из предварительно напряженного железобетона необходимо устраивать анкера на пучках из проволок. При расчетной сейсмичности 9 баллов не допускается применять без анкеров напрягаемую стержневую арматуру диаметром более 25 мм.
8.2.32 При расчетной сейсмичности 9 баллов рамные опоры с вертикальными стойками круглого поперечного сечения допускается проектировать в виде объединенных железобетонным ригелем стальных оболочек (труб), заполняемых бетоном на безусадочном цементе с армированием бетонного ядра арматурным каркасом.
8.2.33 При расчетной сейсмичности 9 баллов расстояние от торца разрезного пролетного строения до края подферменной плиты должно удовлетворять условиям



где L - длина пролетного строения, м;
S - расстояние от торца пролетного строения до края подферменной плиты, см.
8.2.34 Для уменьшения изгибающих моментов в сваях от сейсмической нагрузки свайные фундаменты опор больших мостов при расчетной сейсмичности 9 баллов следует проектировать, применяя наклонные сваи в крайних рядах свайного поля. Число свай, в том числе наклонных, размеры их поперечного сечения и угол наклона устанавливаются расчетом.
8.2.35 При расчетной сейсмичности менее 9 баллов свайные фундаменты опор больших мостов допускается проектировать с вертикальными железобетонными сваями сечением не менее 600x600 мм или диаметром не менее 800 мм.
8.2.36 При проектировании фундаментов опор мостов глубина заложения массивных и свайных фундаментов определяется из условия прочности фундаментов по грунту и устойчивости слоев грунта, прорезаемых фундаментом.
8.2.37 При необходимости погружения свай на большую глубину через слой слабых грунтов допускается использовать стальные сваи из труб или сборных железобетонных оболочек, а также монолитные железобетонные сваи в стальных трубах и железобетонных оболочках, оставляемых в грунте. На поверхность стальных свай необходимо наносить покрытие, стойкое к электрохимической коррозии в водонасыщенных грунтах, водной среде и зоне переменного увлажнения. Железобетонные конструкции свай должны быть защищены от воздействия агрессивной среды.
8.3 Нагрузки и воздействия
8.3.1 При проектировании мостов сейсмические нагрузки следует учитывать совместно с постоянными нагрузками (воздействиями), силами трения в подвижных опорных частях, нагрузками от подвижного состава железных, автомобильных и городских дорог, а также с изменением свойств грунта, бетона, стали и других материалов (конструкций) при сейсмическом воздействии.
8.3.2 К постоянным нагрузкам (воздействиям) особого сочетания относятся:
- нагрузка от собственного веса конструкций;
- гидростатическое давление (взвешивающее действие воды);
- давление потока воды на опоры;
- воздействие усадки и ползучести бетона;
- воздействие осадки грунта;
- воздействие предварительного напряжения железобетонных конструкций;
- регулирование усилий в стальных пролетных строениях с железобетонной плитой проезжей части.
8.3.3 Коэффициент надежности
к постоянным нагрузкам в сочетании с сейсмическим воздействием принимают равным средним значениям
, приведенным в СП 35.13330.


8.3.4 Силы трения в подвижных опорных частях каткового, секторного и валкового типов, тангенциальных и плоских металлических опорных частях, опорных частях с прокладками из фторопласта, а также в качающихся стойках и подвесках определяют по указаниям СП 35.13330, полагая силы трения действующими в неблагоприятном для рассчитываемой конструкции направлении.
8.3.5 При определении сил трения в подвижных опорных частях с прокладками из фторопласта, работающими совместно с полированными листами из нержавеющей стали, нормативное значение коэффициента трения находят при температуре воздуха, равной среднегодовой температуре в месте строительства объекта.
8.3.6 При определении нагрузок на анкерные опоры неразрезных мостов равнодействующую сил трения, приложенных к пролетному строению со стороны подвижных опорных частей, допускается принимать равной нулю.
8.3.7 Совместное действие сейсмических нагрузок и нагрузок от подвижного состава, включая силу торможения, требуется учитывать при проектировании железнодорожных мостов на скоростных магистралях, магистралях с преимущественно пассажирским движением, особогрузонапряженных магистралях и железнодорожных магистралях категорий I-IV по СП 119.13330.
8.3.8 Нагрузки от автомобилей совместно с сейсмическими нагрузками учитывают при проектировании мостов на автомобильных дорогах общего пользования категорий I-IV по СП 34.13330, а также скоростных городских дорогах и магистральных улицах общегородского и районного значения.
8.3.9 Совместное действие сейсмических нагрузок и нагрузок от подвижного состава допускается не учитывать при проектировании железнодорожных мостов на дорогах категорий V по СП 119.13330, на внешних подъездных путях и внутренних путях предприятий, мостов на ведомственных автомобильных дорогах (за исключением случаев, оговоренных в задании на проектирование).
8.3.10 Сейсмические нагрузки не следует учитывать совместно с нагрузками от транспортеров и горизонтальных поперечных ударов подвижного состава при расчете железнодорожных мостов, а также с нагрузками от тяжелых одиночных четырехосных транспортных единиц по схеме НК, нагрузками от торможения и от ударов автомобилей в ограждение проезжей части при расчете мостов на автомобильных и городских дорогах.
8.3.11 Нормативную вертикальную нагрузку от подвижного состава железных дорог следует принимать в виде равномерно распределенной нагрузки интенсивностью
, тс/м, загружая один путь на мосту. Показатель K, обозначающий класс нагрузки, для капитальных сооружений равен 14. Коэффициент
, учитывающий отсутствие в поезде тяжелых транспортеров, равен 0,85 при длине загружения до 25 м и 1,00 при длине загружения более 50 м. При длине загружения от 25 до 50 м коэффициент
определяют по интерполяции.



8.3.12 Для железнодорожных мостов, расположенных на кривой в плане, следует учитывать горизонтальную поперечную нагрузку от центробежной силы, определяемую согласно СП 35.13330.
8.3.13 Нормативная вертикальная нагрузка от подвижного состава автомобильных и городских дорог с каждой полосы движения для капитальных сооружений принимается в виде равномерно распределенной нагрузки интенсивностью 0,1K тс/м, где показатель K равен 14.
8.3.14 При одновременном загружении двух и более полос движения интенсивность нагрузки от автомобилей со второй и последующих полос умножают на коэффициент полосности
, равный 0,6.

8.3.15 При учете сейсмического воздействия динамический коэффициент
к нагрузкам от транспортных средств железных, автомобильных и городских дорог считают равным 1,0.

8.3.16 При определении расчетной нагрузки от транспортных средств на мосту следует исходить из допустимой вероятности 5% появления на мосту во время землетрясения расчетной или более тяжелой подвижной нагрузки. Поправка на вероятность одновременного воздействия на мост статистически независимых нагрузок достигается умножением расчетных нагрузок на коэффициенты сочетания.
8.3.17 Коэффициент сочетания
следует принимать равным:

1,0 - для постоянных нагрузок и воздействий, сейсмических нагрузок, учитываемых совместно с постоянными нагрузками и воздействиями;
0,8 - для сейсмических нагрузок, действие которых учитывается совместно с нагрузками от подвижного состава железных, автомобильных и городских дорог;
0,7 - для нагрузок от подвижного состава железных дорог;
0,5 - для нагрузок от подвижного состава автомобильных и городских дорог.