В.9 Расчет на устойчивость конструктивной системы следует производить на действие расчетных постоянных, длительных и кратковременных вертикальных и горизонтальных нагрузок.
При расчете устойчивости формы конструктивной системы жесткостные характеристики элементов конструктивной системы рекомендуется принимать с учетом армирования, наличия трещин и неупругих деформаций в бетоне и арматуре.
При расчете устойчивости положения конструктивные системы следует рассматривать как жесткое недеформированное тело.
При расчете на опрокидывание удерживающий момент от вертикальной нагрузки должен превышать опрокидывающий момент от горизонтальной нагрузки с коэффициентом запаса 1,5.
При расчете на сдвиг удерживающая горизонтальная сила должна превышать действующую сдвигающую силу с коэффициентом запаса 1,2. При этом следует учитывать наиболее неблагоприятные значения коэффициентов надежности по нагрузке.
В.10 Расчет на устойчивость против прогрессирующего разрушения должен обеспечивать прочность и устойчивость конструктивной системы в целом при выходе из строя одного какого-либо элемента конструктивной системы (колонны, участка стены, участка перекрытия) и возможном последующем разрушении близлежащих элементов. Кроме того, в обоснованных случаях рассматривается расчетная ситуация с выходом из строя части основания под фундаментами (например, в случае образования карстовых провалов).
В.11 Расчет на устойчивость против прогрессирующего разрушения следует производить при действии нормативных вертикальных нагрузок с нормативными значениями сопротивления бетона и арматуры.
В.12 Оценку несущей способности и деформаций основания следует производить согласно соответствующим нормативным документам при действии усилий на основание, установленных при расчете конструктивной системы здания.
Методы расчета
В.13 Расчет конструктивных систем производят методами строительной механики. При этом в общем случае рекомендуется использовать метод конечных элементов.
В.14 Для оценки несущей способности перекрытий допускается использовать расчет методом предельного равновесия.
В.15 Расчет конструктивной системы методом конечных элементов производится как пространственной статически неопределимой системы.
В.16 Моделирование конструктивных систем производят с применением оболочечных, стержневых и (если это необходимо) объемных конечных элементов.
В.17 При создании пространственной модели конструктивной системы следует учитывать характер совместной работы стержневых, оболочечных и объемных конечных элементов, связанный с различным количеством степеней свободы для каждого из указанных элементов.
В.18 Деформативные свойства основания следует учитывать путем использования общепринятых расчетных моделей основания, применения различных типов конечных элементов или краевых условий с заданной податливостью, моделирования всего массива грунта под зданием из объемных конечных элементов, либо комплексно - с использованием всех вышеперечисленных методов.
В.19 На первой стадии расчета конструктивной системы допускается деформативность основания учитывать с помощью коэффициента постели, принимаемого по усредненным характеристикам грунтов.
В.20 При использовании свайных или свайно-плитных фундаментов сваи следует моделировать как железобетонные конструкции или учитывать их совместную работу с грунтом обобщенно, рассматривая основание как единое с приведенными коэффициентами постели.
В.21 При построении конечно-элементной расчетной модели размеры и конфигурацию конечных элементов следует задавать, исходя из возможностей применяемых конкретных расчетных программ, и принимать такими, чтобы была обеспечена необходимая точность определения усилий по длине колонн и по площади плит перекрытий, фундаментов и стен.
В.22 Жесткостные характеристики конечных элементов на первоначальной стадии расчета конструктивной системы, когда армирование конструкций еще не известно, следует определять по линейным деформационным характеристикам.
В.23 После определения арматуры в плитах перекрытий и покрытий следует произвести дополнительный расчет прогибов этих конструкций, принимая уточненные значения изгибных жесткостных характеристик плит с учетом армирования в двух направлениях.
В.24 Рекомендуется выполнить также дополнительный расчет конструктивной системы для более точной оценки изгибающих моментов в элементах перекрытий, покрытий и фундаментных плитах, а также продольных сил в стенах и колоннах с учетом нелинейных жесткостных характеристик конечных элементов.
В.25 Расчет конструктивных систем методом конечных элементов следует производить с использованием специальных сертифицированных в России компьютерных программ.
Для конструктивных систем зданий и сооружений класса КС-3, имеющих повышенный уровень ответственности по ГОСТ 27751, расчет необходимо выполнять не менее чем по двум различным компьютерным программам независимыми организациями.
В.26 Расчет несущей способности перекрытий методом предельного равновесия следует производить, принимая в качестве критерия равенство работ внешних нагрузок и внутренних сил на перемещениях в предельном равновесии плиты перекрытия с наиболее опасной схемой излома, характеризующей ее разрушение.
В.27 Расчет конструктивных систем зданий и сооружений класса КС-3, имеющих повышенный уровень ответственности по ГОСТ 27751, рекомендуется выполнять с учетом оценки конструктивной безопасности при научно-техническом сопровождении специализированных организаций.
Приложение Г (справочное) Диаграммы деформирования бетона
Г.1 Аналитическая зависимость криволинейных диаграмм деформирования бетона принимается в виде:
,
, (Г.1)
где , , - соответственно относительные деформации, напряжения, начальные модули упругости (d - знак дифференциала);
m - индекс материала (для бетона m = b, bt; для арматуры m = s);
- коэффициент изменения секущего модуля, определяемый по формуле
, (Г.2)
здесь - значение коэффициента в вершине диаграммы (при );
- начальный коэффициент изменения секущего модуля (в начале диаграммы или в начале ее криволинейного отрезка);
, - коэффициенты, характеризующие полноту диаграммы материала, ;
- уровень приращения напряжений, который определяется как отношение
, (Г.3)
;
- напряжения, отвечающие пределу упругости материала;
- коэффициент изменения касательного модуля, связанный с коэффициентом изменения секущего модуля соотношением
. (Г.4)
В формулах (Г.2) и (Г.4) знак плюс принимают для диаграммы деформирования арматуры и для восходящей ветви диаграммы деформирования бетона, а знак минус - для нисходящей ветви диаграммы деформирования бетона. Нисходящую ветвь диаграммы разрешается использовать до уровня напряжений (с учетом дополнительных указаний Г.2).
Г.2 При одноосном и однородном сжатии бетона исходная диаграмма деформирования бетона (рисунок Г.1) описывается зависимостями (Г.1) - (Г.4), в которых следует принимать:
для обеих ветвей диаграммы
, (Г.5)
для восходящей ветви
, (Г.6)
для нисходящей ветви
, (Г.7)