Методы измерения вертикальных перемещений должны приниматься в зависимости от классов точности измерения. Измерения I - IV классов производятся методами геометрического и гидростатического нивелирования, II - IV классов - тригонометрического нивелирования и фотограмметрии.
9.16. Геометрическое нивелирование следует применять в качестве основного метода измерения вертикальных перемещений. Основные технические характеристики и допуски для геометрического нивелирования должны приниматься в соответствии с табл. 18.
Таблица 18
Условия геометрического нивелирования | Основные технические характеристики и допуски для геометрического нивелирования классов | |||
I | II | III | IV | |
Применяемые нивелиры | Н-05 и равноточные ему | Н-3 и равноточные ему | ||
Применяемые рейки | РН-05 (односторонние штриховые с инварной полосой и двумя шкалами) | РН-3 (двусторонние шашечные) | ||
Число станций незамкнутого хода, не более | 2 | 3 | 5 | 8 |
Визирный луч: | ||||
длина, м, не более | 25 | 40 | 50 | 100 |
высота над препятствием, м, не более | 1 | 0,8 | 0,5 | 0,3 |
Неравенство плеч (расстояний от нивелира до реек) на станции, м, не более | 0,2 | 0,4 | 1 | 3 |
Накопление неравенств плеч в замкнутом ходе, м, не более | 1 | 2 | 5 | 10 |
Допускаемая невязка в замкнутом ходе при числе станций n, мм | ±0,15√n | +0,5√n | ±1,5√n | ±5,0√n |
Способ проведения работ следует принимать для нивелирования классов:
I - двойным горизонтом, способ совмещения, в прямом и обратном направлении или замкнутый ход;
II и III - одним горизонтом, способ совмещения, способ наведения, замкнутый ход;
IV - одним горизонтом, способ наведения.
9.17. Тригонометрическое нивелирование следует применять при измерениях вертикальных перемещений фундаментов в условиях резких перепадов высот (больших насыпей, глубоких котлованов, косогоров и т.д.). Измерение вертикальных перемещений методом тригонометрического нивелирования следует выполнять короткими визирными лучами (до 100 м), точными (Т-2, Т-5 и им равноточными) и высокоточными (Т-0,5, Т-1 и им равноточными) теодолитами с накладными цилиндрическими уровнями. Допускаемые погрешности измерения расстояний и вертикальных углов в зависимости от выбранного класса точности измерений не должны превышать величин, приведенных в табл. 19.
Таблица 19
Класс точности измерений | Допускаемая погрешность измерения | |||
расстояний, мм, при значении вертикальных углов, град | вертикальных углов, с, при их значениях, град | |||
до 10 | св. 10 до 40 | до 10 | св. 10 до 40 | |
II | 7 | 1 | 2,5 | 1,5 |
III | 14 | 3 | 5 | 3 |
IV | 35 | 8 | 12 | 10 |
9.18. Гидростатическое нивелирование (переносным штанговым прибором или стационарной гидростатической системой, устанавливаемой по периметру фундамента) следует применять для измерения относительных вертикальных перемещений большего числа точек, труднодоступных для измерений другими методами, а также в случаях, когда нет прямой видимости между марками, или на месте производства измерительных работ невозможно пребывание человека по условиям техники безопасности.
9.19. Фотограмметрический (стереофотограмметрический) метод следует применять для измерения осадок, сдвигов, кренов и других деформаций при неограниченном числе наблюдаемых марок, устанавливаемых в труднодоступных для измерений местах функционирующих зданий и сооружений.
Для измерений деформаций стереофотограмметрически одновременно по трем координатным осям X, Yи Z необходимо выполнять фототеодолитную съемку (фотографирование) с двух опорных знаков, являющихся концами базиса фотографирования, не изменяя местоположения и ориентирования фототеодолита в различных циклах наблюдений. При этом следует использовать нормальный способ съемки. Допускается применять равномерно отклоненный (для определения деформаций зданий и сооружений большой протяженности) и конвергентный (для определения общего наклона высоких зданий и сооружений) способы съемок.
Для измерения деформаций фотограмметрически в одной плоскости XZ фототеодолитную съемку следует проводить с одного опорного знака в различных циклах наблюдений.
Величина суммарных деформаций, происшедших за соответствующий период наблюдений, определяется по разности координат, полученных по данным текущего и начального циклов наблюдений.
9.20. Горизонтальные перемещения зданий и сооружений следует измерять методами створных наблюдений, отдельных направлений, триангуляции, фотограмметрии или их комбинированием. Методы измерений горизонтальных перемещений должны приниматься в зависимости от классов точности измерения.
Измерения I - III классов производятся методами створных наблюдений и отдельных направлений, I - IV классов - методами триангуляции, трилатерации и полигонометрии, II - IV классов - методом фотограмметрии.
9.21. Метод створных наблюдений при измерениях горизонтальных перемещений фундаментов следует применять в случае прямолинейности здания (сооружения) или его части и при возможности обеспечить устойчивость концевых опорных знаков створа.
Отклонение деформационной марки от заданного створа во времени следует измерять способами подвижной визирной марки, измерения малых (параллактических) углов при неподвижной визирной цели, а также способом струны.
Способ подвижной визирной цели следует применять для непосредственного измерения отклонения деформационной марки от створа в линейных величинах.
Визирование на подвижную визирную цель, строго центрированную на марке, необходимо осуществлять точными и высокоточными теодолитами, снабженными накладными уровнями.
При использовании в качестве визирной линии луча лазера роль подвижной визирной цели должен осуществлять приемник света с отсчетным приспособлением.
Измерения способом подвижной визирной цели следует проводить при двух кругах теодолита, в прямом и обратном направлениях, при этом число приемов измерения должно быть не менее 5. Расхождения результатов отдельных приемов не должны превышать 1 мм.
Отсчет положения подвижной визирной цели по микрометру теодолита необходимо производить не менее трех раз, а расхождения в отсчетах не должны превышать 0,3 мм.
Для определения отклонения деформационной марки от створа при способе измерения малых (параллактических) углов необходимо провести измерение расстояний от пункта стояния инструмента до марки.
Измерение угла отклонения марки от створа следует проводить точным или высокоточным теодолитом, снабженным окулярным или оптическим микрометром. Число приемов и допускаемые средние квадратические погрешности измерения малых углов должны соответствовать приведенным в табл. 20.
Таблица 20
Расстояние от опорного знака до марки, м | Допускаемая средняя квадратическая погрешность измерения угла, с | Число приемов для теодолита, снабженного микрометром | |
оптическим | окулярным | ||
100 и менее | 2 | 3 | 2 |
200 | 1 | 6 | 4 |
600 - 1000 | 0,5 | 12 | 6 |
Способ струны следует применять при прямолинейности здания или сооружения для непосредственного получения относительной величины линейного смещения фундаментов, определяемого как разность отклонения деформационной марки от линии створа в двух циклах измерений.
9.22. Метод отдельных направлений следует применять для измерения горизонтальных перемещений зданий и сооружений при невозможности закрепить створ или обеспечить устойчивость концевых опорных знаков створа.
Для измерения горизонтальных перемещений методом отдельных направлений необходимо установить не менее трех опорных знаков, образующих треугольник с углами не менее 30°. Величина горизонтального перемещения q, мм, деформационной марки с каждого опорного знака определяется по расстоянию L, мм, от опорного знака до марки (измеряемого с погрешностью 1/2000) и изменению направления ∆α, с, между ориентирным знаком и маркой в двух циклах измерений по формуле
q = ∆αL/ρ, (46)
где ρ = 206265.
Величину и направление горизонтального перемещения каждой марки допускается определять графически.
В случае несовпадения направления вектора горизонтального перемещения с направлением силы, действующей на фундамент здания (сооружения), величину горизонтального перемещения деформационной марки по направлению силы получают как проекцию вектора на направление силы.
9.23. Метод триангуляции следует применять для измерения горизонтальных перемещений зданий и сооружений, возводимых на пересеченной или горной местности, а также при невозможности обеспечить устойчивость концевых опорных знаков створа.
Величину и направление горизонтального перемещения фундамента (или его части) следует определять по изменениям координат деформационных марок за промежуток времени между циклами наблюдений.
Для метода триангуляции допускается принимать условную систему координат. В этом случае оси координат X и Y должны совпадать с поперечной и продольной осями здания или сооружения.
Измерения горизонтальных углов необходимо выполнять с погрешностью, не превышающей приведенной в табл. 21.
Таблица 21
Класс точности измерений | Допускаемая средняя квадратическая погрешность измерения углов, с, для расстояний, м | |||||
50 | 100 | 150 | 200 | 500 | 1000 | |
I | 8 | 4 | 3 | 2 | 1 | - |
II | 20 | 10 | 7 | 5 | 2 | 1 |
III | 40 | 20 | 14 | 10 | 4 | 2 |
IV | 60 | 30 | 20 | 15 | 6 | 3 |
9.24. Крен здания или сооружения следует измерять методами проецирования, координирования, измерения углов или направлений, фотограмметрии, механическими способами с применением кренометров, прямых и обратных отвесов, а также их комбинированием.
Предельные погрешности измерения крена в зависимости от высоты Н наблюдаемого здания (сооружения) не должны превышать величин, мм, для:
гражданских зданий и сооружений 0,0001Н,
промышленных зданий и сооружений, дымовых
труб, доменных печей, башен и др. 0,0005Н,
фундаменты под машины и агрегаты 0,00001Н.
9.25. При измерении кренов здания (сооружения) методом проецирования следует применять теодолиты, снабженные накладным уровнем, или приборы вертикального проецирования.
Проецирование верхней деформационной марки вниз и отсчитывание по палетке (рейке), устанавливаемой в цокольной части, должно выполняться при двух положениях визирной трубы оптического инструмента не менее чем тремя приемами.