Схема светодиодной лампы: устройство простейших драйверов

Рубрика: Электроприборы и освещение
Схема светодиодной лампы: устройство простейших драйверов

Светодиодные источники света быстро завоевывают популярность и вытесняют неэкономичные лампы накаливания и опасные люминесцентные аналоги. Они эффективно расходуют энергию, долго служат, а некоторые из них после выхода из строя подлежат ремонту.

Как устроена светодиодная лампа?

Близкое знакомство с конструкцией LED-светильника может потребоваться только в одном случае – если необходимо отремонтировать или усовершенствовать источник света.

Домашние умельцы, имея на руках комплект элементов, могут самостоятельно собрать лампу на светодиодах, но новичку это не по силам.

Светодиодные лампы в интерьере Учитывая, что приборы со светодиодами стали основой систем освещения современных квартир, умение разбираться в устройстве ламп и ремонтировать их может сохранить весомую часть семейного бюджета

Зато, изучив схему и имея элементарные навыки работы с электроникой, даже новичок сможет разобрать лампу, заменить сломанные детали, восстановив функциональность прибора. Чтобы ознакомиться с подробными инструкциями по выявлению поломки и самостоятельному ремонту светодиодной лампы, переходите, пожалуйста, по этой ссылке .

Имеет ли смысл ремонт LED-лампы? Безусловно. В отличие от аналогов с нитью накаливания по 10 рублей за штуку, светодиодные устройства стоят дорого.

Предположим, «груша» GAUSS – около 80 рублей, а более качественная альтернатива OSRAM – 120 рублей. Замена конденсатора, резистора или диода обойдется дешевле, да и срок службы лампы своевременной заменой можно продлить.

Существует множество модификаций LED-ламп: свечи, груши, шары, софиты, капсулы, ленты и др. Они отличаются формой, размером и конструкцией. Чтобы наглядно увидеть отличие от лампы накаливания, рассмотрим распространенную модель в форме груши.

Схема устройства светодиодной лампы Вместо стеклянной колбы – матовый рассеиватель, нить накала заменили «долгоиграющие» диоды на плате, лишнее тепло отводит радиатор, а стабильность напряжения обеспечивает драйвер

Если отвлечься от привычной формы, можно заметить только один знакомый элемент – цоколь . Размерный ряд цоколей остался прежним, поэтому они подходят к традиционным патронам и не требуют смены электросистемы. Но на этом сходство заканчивается: внутреннее устройство светодиодных приборов намного сложнее, чем у ламп накаливания.

LED-лампы не предназначены для работы напрямую от сети 220 В, поэтому внутри устройства заключен драйвер, являющийся одновременно блоком питания и управления. Он состоит из множества мелких элементов, основная задача которых – выпрямить ток и снизить напряжение.

Разновидности схем и их особенности

Чтобы создать оптимальное напряжение для работы устройства на диодах, драйвер собирают на основе схемы с конденсатором или понижающим трансформатором. Первый вариант – более дешевый, второй применяют для оснащения мощных ламп.

Существует и третья разновидность – инверторные схемы, которые реализуют или для сборки диммируемых ламп, или для устройств с большим числом диодов.

Вариант #1 — с конденсаторами для снижения напряжения

Рассмотрим пример с участием конденсатора, так как подобные схемы являются распространенными в бытовых лампах.

Схема драйвера LED-лампы Элементарная схема драйвера LED-лампы. Основными элементами, гасящими напряжение, являются конденсаторы (C2, C3), но ту же функцию выполняет и резистор R1

Конденсатор C1 защищает от помех электросети, а C4 сглаживает пульсации. В момент подачи тока два резистора – R2 и R3 – ограничивают его и одновременно предохраняют от короткого замыкания, а элемент VD1 преобразует переменное напряжение.

Когда прекращается подача тока, конденсатор разряжается при помощи резистора R4. К слову, R2, R3 и R4 используются далеко не всеми производителями светодиодной продукции.

Для проверки конденсатора довольно часто используют мультиметр.

Минусы схемы с конденсаторами:

  • Возможно перегорание диодов , так как стабильности подачи тока не наблюдается. Напряжение на нагрузке полностью зависит от напряжения питания.
  • Отсутствует гальваническая развязка , поэтому существует риск удара током. Не рекомендуется во время разборки ламп прикасаться к токоведущим элементам, так как они находятся под фазой.
  • Практически невозможно достичь высоких токов свечения , потому что для этого потребуется увеличение емкостей конденсаторов.
  • Однако преимуществ также немало, именно благодаря им конденсаторы остаются популярными. Плюсами являются простота сборки, широкий диапазон напряжений на выходе и невысокая стоимость.

    Можно смело экспериментировать с самостоятельным изготовлением, тем более, часть деталей отыщется в старых приемниках или телевизорах.

    Вариант #2 — с импульсным драйвером

    В отличие от линейного драйвера с конденсатором, импульсный эффективно защищает светодиоды от перепадов напряжения и помех в сети.

    Примером импульсного устройства служит популярная электронная модель CPC9909. Рассмотрим подробнее ее особенности. Эффективность ее использования достигает 98% — показателя, при котором действительно можно говорить об энергосбережении и экономии.

    Популярная микросхема CPC9909 Микросхему CPC9909, разработанную компанией Clare, часто применяют для самостоятельной сборки светодиодных светильников, в том числе и увеличенной мощности. Контроллер заключен в компактный корпус из пластика

    Питание устройства может происходить напрямую от высокого напряжения – до 550 В, так как драйвер оснащен встроенным стабилизатором. Благодаря этому же стабилизатору схема стала проще, а стоимость – ниже.

    Схема контроллера с СРС9909 Схема LED-драйвера на базе микросхемы CPC9909. Преимущества схемы: возможность работы в температурном диапазоне от -55 °С до +85 °С и питание от тока переменного напряжения

    Микросхему успешно используют для разработки электросетей аварийного и резервного освещения, так как она подходит для схем повышающих преобразователей.

    В домашних условиях на базе CPC9909 чаще всего собирают светильники с питанием от батарей или драйверы с мощностью, не превышающей 25 В.

    Вариант #3 — с диммируемым драйвером

    Регулировка яркости свечения осветительных приборов позволяет установить в помещении нужный уровень освещения. Это удобно при создании отдельных зон, снижении яркости света в дневное время или для подчеркивания предметов интерьера.

    С помощью диммера использование электроэнергии становится более рациональным, а ресурс службы электроприбора увеличивается.

    Светильник с диммируемой лампой Образец светильника в стиле «ретро» с диммером. По внешнему виду настольный осветительный прибор напоминает керосиновую лампу и сбоку имеет ручку управления яркостью свечения

    Существует два вида диммируемых драйверов, каждый из которых обладает своими преимуществами. Первые работают с ШИМ-управлением.

    Их устанавливают между лампой и блоком питания. Энергия подается в виде импульсов разной длительности. Пример использования драйвера с ШИМ-регулировкой – бегущая строка.

    Испытание драйвера 40 Вт Испытание диммируемого драйвера мощностью 40 Вт. Он предназначен для офисных светильников, а также приборов для автопаркингов и общественных зданий, где требуется режим экономии электроэнергии

    Диммируемые драйверы второго вида воздействуют непосредственно на источник питания и применяются для устройств со стабилизированным током.

    При регулировании тока может происходить изменение оттенка свечения: диоды белого цвета при уменьшении тока начинают излучать слегка желтый свет, а при увеличении – синий.

    Краткий обзор и тестирование популярных LED-ламп

    Хотя принципы построения схем драйверов различных осветительных устройств похожи, между ними имеются отличия и в последовательности подключения элементов, и в их выборе.

    Рассмотрим схемы 4 ламп, которые продаются в свободном доступе. При желании их можно отремонтировать своими руками.

    Если существует опыт работы с контроллерами, можно заменить элементы схемы, перепаять ее, слегка усовершенствовать.

    Однако скрупулезная работа и усилия по поиску элементов не всегда оправданы – легче купить новый осветительный прибор.

    Вариант #1 – LED-лампа BBK P653F

    У марки BBK существует две очень похожие модификации: лампа P653F отличается от модели P654F лишь конструкцией излучающего узла. Соответственно, и схема драйвера, и конструкция прибора в целом у второй модели построена по принципам устройства первой.

    Схема драйвера лампы BBK P653F Плата имеет компактные размеры и продуманное расположение элементов, для крепления которых применены обе плоскости. Наличие пульсаций объясняется отсутствием фильтрующего конденсатора, который должен быть на выходе

    В конструкции легко обнаружить недостатки. Например, место установки контроллера: частично в радиаторе, при отсутствии изоляции, частично в цоколе. Сборка на микросхеме SM7525 выдает на выходе 49,3 В.

    Вариант #2 – LED-лампа Ecola 7w

    Радиатор выполнен из алюминия, цоколь – из термостойкого полимера серого цвета. На печатной плате толщиной в полмиллиметра закреплены 14 диодов, подключенных последовательно.

    Между радиатором и платой – слой теплопроводящей пасты. Цоколь зафиксирован саморезами.

    Схема драйвера лампы Ecola 7w Схема контроллера простая, реализована на компактной плате. Светодиоды нагревают плату-основание до +55 ºС. Пульсаций практически нет, радиопомехи также исключены

    Плата полностью помещена внутрь цоколя и присоединена укороченными проводами. Возникновение коротких замыканий невозможно, так как вокруг находится пластмасса – изоляционный материал. Результат на выходе контроллера – 81 В.

    Вариант #3 – разборная лампа Ecola 6w GU5,3

    Благодаря разборной конструкции можно самостоятельно производить ремонт или совершенствовать драйвер устройства.

    Однако портит впечатление неприглядный внешний вид и конструкция прибора. Габаритный радиатор утяжеляет вес, поэтому при креплении лампы к патрону рекомендуется дополнительная фиксация.

    Схема драйвера лампы Ecola 6w GU5.3 Плата имеет компактные размеры и продуманное расположение элементов, для крепления которых применены обе плоскости. Наличие пульсаций объясняется отсутствием фильтрующего конденсатора, который должен быть на выходе

    Недостатком схемы является наличие заметных пульсаций светового потока и высокая степень радиопомех, что обязательно скажется на сроке эксплуатации. Основа контроллера – микросхема BP3122, показатель на выходе – 9,6 В.

    Вариант #4 – лампа Jazzway 7,5w GU10

    Внешние элементы лампы отсоединяются легко, поэтому до контроллера можно добраться достаточно быстро, открутив две пары саморезов. Защитное стекло держится на защелках. На плате зафиксированы 17 диодов с последовательной связью.

    Однако сам контроллер, находящийся в цоколе, щедро залит компаундом, а провода запрессованы в клеммах. Чтобы их освободить, нужно воспользоваться сверлом или применить распайку.

    Схема драйвера лампы Jazzway 7.5w GU10 Недостаток схемы в том, что функцию ограничителя тока выполняет обычный конденсатор. При включении лампы возникают броски тока, результатом чего является или перегорание светодиодов, или выход из строя светодиодного моста

    Радиопомех не наблюдается – и все благодаря отсутствию импульсного контроллера, но на частоте 100 Гц наблюдаются ощутимые пульсации света, доходящие до 80% от максимального показателя.

    Результат работы контроллера – 100 В на выходе, но по общей оценке лампа относится скорее к слабым приборам. Стоимость ее явно завышена и приравнена к стоимости марок, которые отличаются стабильным качеством продукции.

    Разбор схемы ЛЕД-лампы MR-16:

    Схема драйвера для самостоятельной сборки ламп мощностью до 15Вт:

    Как выглядит и действует драйвер FT833A:

    Самоделка из подручных элементов:

    Сейчас на коммерческих интернет-площадках можно приобрести наборы и отдельные элементы для сборки осветительных приборов различной мощности.

    При желании можно отремонтировать вышедшую из строя LED-лампу или доработать новую, чтобы получить лучший результат. При покупке рекомендуем тщательно проверять характеристики и соответствие деталей .

    Комментарии

    Авторизуйтесь или зарегистрируйтесь чтобы оставить комментарий.