Руководящий документ РД 52.10.243-92 "Руководство по химическому анализу морских вод" (утв. решением Комитета по гидрометеорологии и мониторингу окружающей среды от 28 апреля 1992 г.) стр. 30

Для получения хлора берут большой избыток реактивов - 2 г и 6 мл концентрированной соляной кислоты, которую по каплям прибавляют к перманганату калия из капельной воронки. Образующийся хлор очищают от воды и газообразного хлористого водорода в склянке Тищенко с концентрированной серной кислотой, которая служит также счетчиком тока хлора, и пропускают в раствор гидроокиси натрия, приготовленный согласно п. 4.2.7. Через каждую минуту после энергичного перемешивания измеряют pH раствора по универсальной индикаторной бумаге. При pH = 7, т.е. после нейтрализации щелочного раствора, реакцию прекращают, добавляют 1,8 г твердой гидроокиси натрия, закрывают колбу пробками и полностью растворяют щелочь при перемешивании. Концентрацию полученного гипохлорита натрия определяют следующим образом: в коническую колбу на 100 мл отбирают пипеткой 1 мл, полученного раствора гипохлорита натрия, добавляют 50 мл свежеприготовленного 1%-ного раствора KI (раствор желтеет), а затем - 0,25 мл концентрированной соляной кислоты. В результате выделения иода раствор приобретает светло-коричневый цвет. После тщательного перемешивания его титруют раствором тиосульфата натрия концентрацией 0,05 моль/л, сначала до светло-желтого цвета, а затем после прибавления 1 мл 1%-ного раствора крахмала до полного обесцвечивания. 1 мл раствора тиосульфата натрия соответствует 3,5 мг активного хлора.
Необходимо отметить, что очень трудно определить момент нейтрализации, и конечный раствор поэтому всегда является кислым за счет избытка хлора. К тому же хлор обесцвечивает красители индикаторной бумаги, и она становится белой. Поэтому раствор всегда содержит избыточное количество активного хлора в форме хлорноватистой кислоты. В норме концентрация активного хлора равна 1,4 мг/мл. Если она превышает это значение более чем в полтора раза, то необходимо полученный раствор разбавить рассчитанным количеством щелочного раствора, приготовленного согласно п. 4.2.6, с обязательным повторным определением содержания активного хлора. Для примера, при концентрации 2,8 мг/мл необходимо добавить 100 мл раствора щелочи. Приготовленный раствор гипохлорита натрия хранят в склянке из темного стекла с притертой пробкой. При хранении в холодильнике раствор устойчив 3-4 недели.
4.2.9. Буферный раствор готовят растворением 66,7 г натрия лимоннокислого, 34 г борной кислоты, 30 г едкого натра и 19,4 г лимонной кислоты в безаммиачной дистиллированной воде в мерной литровой колбе до метки. Его хранят в холодильнике в склянке с притертой пробкой. Он устойчив длительное время, однако рекомендуется иметь не более 1 л раствора. Буферный раствор должен иметь pH = 10,5...11,0, поэтому его необходимо периодически проверять с помощью pH-метра (нельзя использовать для этого индикаторную бумагу). Этот раствор имеет то преимущество, что при его применении для определения аммонийного азота не выпадает осадок.
4.2.10. Раствор азотной кислоты концентрацией 2 моль/л готовят смешением одного объема концентрированной азотной кислоты ( моль/л) и четырех объемов дистиллированной воды.
4.2.11. Насыщенный раствор хлористого натрия готовят растворением 36,0 г соли в 100 мл дистиллированной воды.

4.3. Подготовка посуды для проведения анализа

Важное значение для точности анализа имеет чистота посуды, особенно колб, в которых получают окрашенные растворы. Опыт показал, что после мытья и ополаскивания безаммиачной водой их следует сушить 3-4 ч в сушильном шкафу при температуре 200°C, при которой разлагаются большинство солей аммония. Затем по охлаждении в шкафу до 60-70°C колбы закрывают притертыми пробками и в таком виде температуру доводят до комнатной. Всю остальную посуду следует перед употреблением 2-3 раза ополаскивать безаммиачной водой.
Все операции с открытыми растворами при анализе на аммонийный азот следует проводить как можно быстрее из-за интенсивного поглощения аммиака из воздуха и связанного с этим завышения результатов.

5. Проведение анализа

25 мл пробы морской воды наливают в колбу Эрленмейера на 50 мл с пришлифованной пробкой, затем добавляют в вытяжном шкафу последовательно 1,5 мл буферного раствора и по 0,7 мл реагентов А и Б. После каждого добавления колбу закрывают пробкой и раствор тщательно перемешивают. Закрытую колбу оставляют стоять в темноте при комнатной температуре по крайней мере 6 ч, а лучше всего до следующего дня. В зависимости от интенсивности окраски раствора выбирают длину кюветы (50; 20 или 10 мм) и измеряют его оптическую плотность при 630 нм на спектрофотометре или на фотоэлектроколориметре при светофильтре, наиболее близком к этой длине волны (например, для ФЭК-60 светофильтр N 6) относительно кюветы той же длины, наполненной аликвотной частью пробы морской воды. При использовании кюветы длиной 100 мм необходимо брать 50 мл пробы. В этом случае объем прибавляемых реагентов надо увеличить вдвое.
Если в кювете длиной 50 мм оптическая плотность определяемой пробы больше 0,50-0,60, то следует провести повторное измерение в кювете длиной 20 мм. Если оптическая плотность пробы в последней кювете превышает 0,80, то необходимо снова провести измерение, но уже в кювете длиной 10 мм. Если же в этой кювете оптическая плотность превышает 1,5-1,7, то пробу необходимо разбавить в два раза. Для этого отбирают аликвоту 50 мм и разбавляют безаммиачной водой в мерной колбе на 100 мл до метки. В этом случае обязательно определяют содержание аммонийного азота в безаммиачной воде в кювете длиной 50 мм. Если же разбавление в два раза окажется недостаточным, то пробу разбавляют в четыре раза (25 мл пробы в мерной колбе на 100 мл). Оптическую плотность разбавленных проб измеряют в кюветах длиной 10 мм против кюветы, наполненной аликвотной частью разбавленной пробы.
Для ускорения анализа без понижения его точности можно использовать безаммиачную воду с концентрацией аммонийного азота 15-20 мкг/л, которую получают двукратным пропусканием дистиллированной воды через колонку со скоростью 7-8 мл/мин.

6. Подготовка средств измерений к работе

6.1. Методы приготовления градуировочных растворов

Основной стандартный раствор хлористого аммония готовят растворением 0,3820 г соли в безаммиачной дистиллированной воде в мерной литровой колбе до метки; 1 мл этого раствора содержит 0,1 мг аммонийного азота.
Рабочие стандартные растворы хлористого аммония N 1, 2 и 3 готовят разбавлением соответственно 1; 10 и 15 мл основного стандартного раствора безаммиачной дистиллированной водой в мерных колбах на 100 мл до метки. 1 мл этих растворов содержит соответственно 1,0; 10,0 и 15,0 мкг аммонийного азота. Растворы готовят в день употребления.

6.2. Установление градуировочных характеристик метода

При построении градуировочных графиков необходимо предварительно получить требуемое количество безаммиачной воды, а не отбирать ее из емкости, в которую она непрерывно поступает, т.е. пользоваться безаммиачной водой с определенной концентрацией аммонийного азота. В этом случае получается хорошая воспроизводимость результатов.
В связи с тем, что концентрация аммонийного азота в морской воде может изменяться от нуля до нескольких тысяч мкг/л, строят градуировочные графики в диапазонах 0-100, 0-500 или 0-1500 мкг/л.
Для построения градуировочного графика в диапазоне концентраций 0-100 мкг/л отбирают 0,5; 2,0; 4,0; 6,0; 8,0 и 10,0 мл рабочего стандартного раствора хлористого аммония N 1 и разбавляют их безаммиачной водой в мерных колбах на 100 мл до метки. Полученные растворы имеют концентрации 5,0; 20,0; 40,0; 60,0; 80,0 и 100 мкг/л. Отбирают пипеткой в колбы Эрленмейера по 25 мл каждого раствора и добавляют к ним в вытяжном шкафу последовательно 1,5 мл буферного раствора и по 0,7 мл реагентов А и Б. После добавления каждого реагента колбу закрывают пробкой, раствор перемешивают и оставляют стоять в темноте при комнатной температуре по крайней мере 6 ч, а лучше всего до следующего дня. Окрашенный прозрачный раствор переливают в кювету длиной 50 мм и измеряют его оптическую плотность относительно кюветы, наполненной аликвотной частью безаммиачной дистиллированной воды с добавленными к ней теми же реактивами. Каждый стандартный раствор готовят параллельно не менее трех раз. Градуировочный график строят по средним значениям оптической плотности в координатах "оптическая плотность - концентрация аммонийного азота, мкг/л". Его следует проверять не реже одного раза в месяц и обязательно каждый раз при приготовлении новых растворов реактивов.
Для построения градуировочных графиков в диапазонах концентрации 0-500 и 0-1500 мкг/л отбирают по 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 и 0,6; 2,0; 4,0; 6,0; 8,0; 10,0 мл рабочих стандартных растворов N 2 и 3 соответственно и разбавляют их безаммиачной водой в мерных колбах на 100 мл до метки. Полученные растворы имеют концентрации 50; 100; 200; 300; 400; 500 и 90; 300; 600; 900; 1200; 1500 мкг/л соответственно. Дальнейший ход построения калибровочных графиков аналогичен описанному для диапазона 0-100 мкг/л, за исключением того, что оптическую плотность измеряют в кюветах длиной 20 и 10 мм соответственно. Все измерения проводят при длине волны 630 нм или максимально к ней приближенной.

7. Обработка результатов

По измеренным значениям оптической плотности исследуемых проб морской воды с помощью градуировочного графика находят концентрацию аммонийного азота (мкг/л).
Содержание аммонийного азота в пробах, разбавленных в два и четыре раза, рассчитывают соответственно по формулам:
,
,
где а и b - содержание аммонийного азота в разбавленной пробе и безаммиачной воде соответственно.

8. Числовые значения показателей погрешности МВИ

На основании метрологической аттестации, проведенной ВНИИАСМ-НПО "Исари" Госстандарта СССР с 01.09 по 25.12.87 г. (табл. 18), настоящая методика определения аммонийного азота допущена к применению в организациях Росгидромета.
Таблица 18

Результаты метрологической аттестации МВИ

Диапазон концентраций аммонийного азота в морской воде, мкг/л
Показатель воспроизводимости , %
Показатель правильности , %
Показатель погрешности МВИ, суммарная погрешность , %
15-50
3,85
10,3
11,40
50-100
2,45
3,4
4,27
100-500
1,70
2,2
2,80
500-1500
0,85
1,4
1,69

9. Требования к квалификации аналитика

Определение аммонийного азота может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.

10. Нормы затрат рабочего времени на анализ

Для анализа аммонийного азота в 10 пробах требуется 11,5 чел.-ч, в том числе:
на взятие проб из батометра - 0,5 чел.-ч;
на приготовление безаммиачной воды (5 л) - 8,5 чел.-ч;
на приготовление растворов реактивов - 1,5 чел.-ч;
на выполнение измерений - 0,5 чел.-ч;
на выполнение расчетов - 0,5 чел.-ч.

Список литературы

1. Руководство по методам химического анализа морских вод. - Л.: Гидрометеоиздат, 1977, с. 92-100.
2. Chemical methods for use in marine environmental monitoring/Manual and Guides, N 12. - IOC, UNESCO, 1983, p. 29-36.
______________________________
* Все реактивы и стандартные растворы готовят на свежеприготовленной безаммиачной воде.

Общий и органический азот

Методика позволяет определять общий и органический азот в морских и распресненных водах, предназначена для проведения мониторинга этих вод и характеризуется пределом обнаружения азота около 30 мкг/л. Диапазон определяемых концентраций общего и органического азота - 30-5000 мкг/л. Анализу не мешают любые ионы или соединения, присутствующие в чистых или умеренно загрязненных морских водах. Также не мешает определению сероводород при концентрациях до 2 мг/л. При анализе же вод Черного моря, в которых содержание сероводорода может доходить до 20 мг/л, пробы следует разбавить безазотной водой до указанной выше концентрации.
Азот в морской воде входит в состав как неорганических соединений (нитриты, нитраты, соли аммония), так и органических (гуминовые и фульвовые вещества, белки, аминокислоты, амины, амиды и др.). Эти соединения относятся к числу важнейших биогенных веществ, в значительной степени определяющих биологическую продуктивность морей и океанов. Изменения в составе форм азота указывают на направление основных биохимических и гидробиологических процессов в морской среде.