На практике идентификация опасности, исходящей от конкретной системы, оборудования или деятельности, может давать в качестве результата очень большое число сценариев потенциальных аварий. Детализированный количественный анализ частот и последствий не всегда осуществим. В таких ситуациях может оказаться целесообразным качественное ранжирование сценариев, помещение их в матрицы риска, указывающие различные уровни риска. Количественное определение концентрируется в таком случае на сценариях, дающих более высокие уровни риска.
На рисунке 4 представлен пример матрицы риска. Применение матрицы риска могло бы иметь своим результатом сценарии, считающиеся источником низких или незначительных рисков, снижающихся при более глубоком рассмотрении, поскольку в собирательном значении они не могли бы стать источником значительного уровня риска.
Рисунок 4 - Матрица риска
662 × 573 пикс.   Открыть в новом окне |
В матрице использована следующая классификация риска:
В - высокая величина риска;
С - средняя величина риска;
М - малая величина риска;
Н - незначимая величина риска.
Применительно к данному примеру серьезность последствия определяется следующим образом:
589 × 267 пикс.   Открыть в новом окне |
Примечание - Матрица риска приведена только в качестве примера.
Имеется много матриц риска, но наиболее подходящая для конкретного анализа матрица зависит от особенностей конкретного случая. Форма используемой матрицы должна фиксироваться в отчете вместе с оцениваемыми позициями всех рассматриваемых сценариев аварий независимо от того, подвергаются ли они в дальнейшем подробному количественному анализу.
Количественный анализ риска, как правило, требует оценок как частоты (или вероятности) нежелательного события, так и ассоциирующегося с ним последствия с целью установления меры риска. Тем не менее, в некоторых случаях, когда расчеты показывают, что последствия должны быть незначительными или частота должна быть чрезвычайно низкой, может быть достаточно оценки единственного параметра.
6.3.2.1 Анализ частот
Целью анализа частот является определение частоты каждого из нежелательных событий или сценариев аварий, идентифицированных на стадии идентификации опасности. Обычно используются три основных подхода:
а) использование соответствующих данных эксплуатации с целью определения частоты, с которой данные события происходили в прошлом, и, исходя из этого, определение оценок частоты, с которой они произойдут в будущем. Используемые данные должны соответствовать типу системы, оборудования или деятельности, подлежащих рассмотрению;
б) прогнозирование частот событий с использованием таких технических приемов, как анализ диаграммы всех возможных последствий несрабатывания или аварии системы ("дерева неисправностей") и анализ диаграммы возможных последствий данного события ("дерева событий"). В том случае, когда статистические данные недоступны или не соответствуют требованиям, необходимо получить частоты событий посредством анализа системы и ее аварийных состояний. Числовые данные для соответствующих событий, в том числе данные о неисправности оборудования и ошибке человека, взятые из опыта эксплуатации или опубликованных данных, используются для определения оценки частоты нежелательных событий. При использовании методов прогнозирования важно обеспечить уверенность в том, что при анализе была учтена возможность нарушений режима работы системы, а также ее частей или компонентов, которые должны функционировать в случае возникновения отказов системы. При проведении анализа частот могут использоваться методы имитационного моделирования отказов оборудования и разрушений конструкции вследствие старения, а также других деградационных процессов;
в) использование мнения экспертов. Существует ряд методов для составления экспертного мнения, которые исключают двусмысленность оценок, помогают в постановке соответствующих вопросов. Экспертные оценки должны учитывать всю имеющуюся информацию, в том числе статистическую, экспериментальную, конструктивную и т.д. Имеющиеся в наличии методы предусматривают метод Делфи, парных сопоставлений, классификации групп риска и др.
Анализ диаграммы возможных отказов или аварии системы ("дерева неисправностей") и анализ диаграммы возможных последствий отказов ("дерева событий") изложены в приложении А. В МЭК 61025 [2] детально рассматривается анализ "дерева неисправностей".
6.3.2.2 Анализ последствий
Анализ последствий предусматривает определение результатов воздействия на людей, имущество или окружающую среду в случае наступления нежелательного события. Для расчетов рисков, касающихся безопасности (работающих или неработающих людей), анализ последствий представляет собой приблизительное определение количества людей, которые могут быть убиты, ранены или иметь серьезные поражения в том случае, если произойдет нежелательное событие.
Нежелательные события обычно состоят из таких ситуаций, как выброс токсичных материалов, пожары, взрывы, излучение частиц из разрушающегося оборудования и т.д. Модели последствий требуются для прогнозирования размера аварий, катастроф и других явлений. Знание механизма высвобождения энергии или материала и происходящих с ними последующих процессов дает возможность прогнозировать соответствующие физические процессы заранее.
Существует множество методов оценки такого рода явлений, диапазон которых простирается от упрощенных аналитических подходов до очень сложных компьютерных моделей. При использовании методов моделирования необходимо обеспечить соответствие той проблеме, которая подлежит рассмотрению.
Приложение А
(справочное)
Методы проведения анализа
А.1 Исследование опасности и связанных с ней проблем (HAZOP)
HAZOP является формой анализа видов и последствий отказов (FMEA). Исследования HAZOP первоначально были разработаны для химической промышленности. Это процедура идентификации возможных опасностей по всему объекту в целом. Она особенно полезна при идентификации непредвиденных опасностей, заложенных в объекте вследствие недостатка информации при разработке, или опасностей, проявляющихся в существующих объектах из-за отклонений в процессе их функционирования.
Основными задачами метода являются:
а) составление полного описания объекта или процесса, включая предполагаемые состояния конструкции;
б) систематическая проверка каждой части объекта или процесса с целью обнаружения путей возникновения отклонений от проектного замысла;
в) принятие решения о возможности возникновения опасностей или проблем, связанных с данными отклонениями.
Принципы исследований HAZOP могут применяться по отношению к техническим объектам в процессе их функционирования либо на различных стадиях проектирования. Исследование HAZOP, осуществляемое во время начальной стадии проектирования, может выполнять руководитель проекта.
Наиболее распространенная форма исследования HAZOP осуществляется на стадии рабочего проекта и носит название исследования HAZOP II.
Исследование HAZOP II предусматривает следующие этапы:
Этап 1 - определение целей, задач и области применения исследования, например выделение опасности, характеризующейся только нелокальными последствиями или только локальными последствиями, участков промышленного объекта, подлежащих рассмотрению, и т.д.;
Этап 2 - комплектование группы по исследованию HAZOP. Данная группа должна состоять из проектировщиков и эксплуатационников, обладающих достаточной компетентностью для оценки последствий отклонений от условий функционирования системы;
Этап 3 - сбор необходимой документации, чертежей и описаний технологического процесса. Сюда входят графики последовательности технологических операций; чертежи трубопроводов и измерительного оборудования; технические условия на оборудование, трубопроводы и измерительную аппаратуру; логические диаграммы управления технологическим процессом; проектные схемы; методики эксплуатации и технического обслуживания; методики реагирования на чрезвычайные ситуации и т.д.;
Этап 4 - анализ каждой основной единицы оборудования и всего вспомогательного оборудования, трубопроводов и контрольно-измерительной аппаратуры с использованием документов, собранных на этапе 3. В первую очередь определяется цель проектирования технологического процесса, затем применительно к каждой линии и единице оборудования по отношению к таким переменным процесса, как температура, давление, расход, уровень и химический состав, применяются слова-указатели (по таблице А.1). (Данные слова-указатели стимулируют индивидуальное мышление и побуждают к коллективному обсуждению);
Таблица А-1 - Слова-указатели HAZOP II
578 × 524 пикс.   Открыть в новом окне |
Этап 5 - документальное подтверждение любого отклонения от нормы и соответствующих состояний. Кроме того, осуществляется выявление способов обнаружения и/или предупреждения отклонения. Данное документальное подтверждение обычно указывается на рабочих листах HAZOP. Образец такого рабочего листа слов-указателей "не, нет" по отношению к "расходу" представлен в таблице А.2.
Таблица А.2 - Образец рабочего листа слов-указателей "не, нет" HAZOP II
619 × 622 пикс.   Открыть в новом окне |
Исследование HAZOP может выделить отклонения, для которых необходима разработка смягчающих мер. В тех случаях, когда смягчающие меры неочевидны или очень дороги, результаты исследования HAZOP дают возможность идентифицировать инициирующие события, необходимые для дальнейшего анализа риска.
А.2 Анализ видов и последствий отказов (FMEA)
FMEA представляет собой метод, преимущественно качественный, хотя его можно представить и в количественной форме, при помощи которого систематически идентифицируются последствия каждого отдельного компонента аварийных состояний. Это индуктивный метод, который основан на вопросе "что случится, если ... ?". Непременной отличительной чертой в любом FMEA является рассмотрение каждого основного компонента/части системы на предмет того, каким образом он достигает аварийного состояния и как это влияет на аварийное состояние системы. Как правило, анализ является описательным и организуется в форме составления таблицы или рабочего листа, предназначенной для информации. FMEA, безусловно, относится к аварийным состояниям компонента системы, причинным факторам и воздействиям этого состояния на систему в целом, и представляет их в удобной форме.
FMEA представляет собой подход по принципу "снизу вверх" и рассматривает последствия аварийных состояний компонента по принципу "одно за один раз". Этот метод способен переработать достаточное количество данных, прежде чем стать затруднительным для реализации. Кроме того, результаты могут быть легко перепроверены другим человеком, знакомым с системой.
Главными недостатками метода являются избыточность, исключение из рассмотрения восстановительно-ремонтных действий и сосредоточение на авариях единственного компонента.