Снижение с помощью регулятора напряжения питания электродвигателя позволяет уменьшить магнитное поле в стали, которое избыточно для рассматриваемого режима нагрузки, снизить потери в стали и уменьшить их долю в общей потребляемой мощности, т.е. повысить КПД двигателя. Сам регулятор напряжения (обычно в тиристорном исполнении) потребляет мало энергии. Его собственное потребление становится заметным, когда двигатель работает на полной нагрузке. Часто в режиме холостого хода потребляется почти столько же энергии, сколько необходимо для работы при низкой загрузке. Переключение обмоток двигателя мощностью 7,5 кВт, работающего в номинальном режиме (линейное напряжение равно 380 В) по схеме "треугольник", на схему звезды при работе на пониженной нагрузке 1 кВт (режим холостого хода) позволяет уменьшить потери с 0,5 кВт до 0,25 кВт (рис.3).
Автоматическое переключение обмоток со схемы "треугольник дельта" на схему соединения "звезда" в зависимости от нагрузки является простейшей схемой регулирования двигателя, длительное время работающего на малой нагрузке. Необходимо избегать работы двигателя в режиме холостого хода.
В установках с регулируемым числом оборотов (насосы, вентиляторы и др.) широко применяются регулируемые электроприводы. Оценочные значения экономии электроэнергии при применении регулируемого электропривода в вентиляционных системах, работающих в переменных режимах - 50%, в компрессорных системах - 40-50%, в воздуходувках и вентиляторах - 30%, в насосных системах - 25%.
Тиристорные регуляторы напряжения дешевле, диапазон регулирования скорости вращения меньше (снижение на 10-15% ниже номинальных); частотные регуляторы (наиболее часто в транзисторном исполнении) дороже, диапазон регулирования шире. Стоимость частотного регулятора оборотов электродвигателя примерно равна стоимости электродвигателя.
Для электроприводов, работающих большую часть рабочего времени на нагрузку, достигающую 30% и менее от номинальной мощности и в которой регулирование можно осуществлять изменением оборотов электропривода (насосы, вентиляторы, мешалки и др.), эффективно применение частотных регуляторов оборотов электродвигателя. Для 15-киловатного двигателя в 1996 г. стоимость электронной частотной системы управления составляла около 200$ USA/кВт. В настоящее время она снизилась до 85-100$ USA/кВт. Удельная стоимость снижается при увеличении единичной мощности привода (см. Рис. 4).
![]() | |
1672 × 811 пикс.   Открыть в новом окне |
![]() | |
1672 × 731 пикс.   Открыть в новом окне |
![]() | |
1774 × 1223 пикс.   Открыть в новом окне |
Перечень общих мероприятий по энергосбережению в установках, использующих электродвигатели:
- Мощность двигателя должна соответствовать нагрузке.
- При часто повторяющейся работе в режиме холостого хода двигатель должен легко выключаться.
- Необходимо эффективно защищать крыльчатку системы обдува двигателя для устранения его возможного перегрева и увеличения доли потерь.
- Проверять качество эксплуатации трансмиссии.
- На эффективность работы системы влияет смазка подшипников и узлов трения; применять правильно тип трансмиссии;
- Рассмотреть возможность применения электронных регуляторов скорости вращения в двигателях, которые часть времени работают на неполной нагрузке.
- Оценить возможность применения энергоэффективных (ЭЭ) двигателей, т.к. суммарная экономия электроэнергии может превысить в 15 раз стоимость электродвигателя.
- Качественно проводить ремонт двигателя, отказаться от применения неисправных или плохо отремонтированных двигателей.
Применение электроприводов с частотными регуляторами (ЧРП) для оптимизации режимов эксплуатации электропотребляющего оборудования
Частотно-регулируемый электропривод эффективен и быстро окупается в насосных системах, большую часть времени работающих при пониженных подачах, в которых регулирование осуществлялось с помощью регулирующих задвижек.
При снижении с помощью задвижки подачи насосов ниже 40-50% от номинального значения резко начинают возрастать удельные затраты на перекачку жидкости. При этом гидравлическая мощность насоса частично теряется на задвижке (N = Q х ДельтаН_пот), а сам насос начинает работать в зоне рабочей характеристики с низким КПД. Необходимый напор при снижении расхода можно обеспечить снижением оборотов двигателя привода насоса, используя при выборе рабочих оборотов привода теорию подобия турбомашин. Как известно, рабочие характеристики насосов пересчитываются с учетом того, что напор насоса пропорционален квадрату оборотов рабочего колеса, подача - оборотам, мощность - кубу оборотов. В сходственных точках КПД насоса одинаков. При этом устраняются потери энергии в регулирующем клапане (задвижке), и насос работает в зоне с более высоким КПД.
Обороты двигателя регулируются частотой питания сети, преобразуемой со стандартной частоты 50 Гц с помощью частотного преобразователя.
Частотно регулируемый электропривод (ЧРП) - это электродвигатель (асинхронный или синхронный), оснащенный регулируемым преобразователем частоты.
По результатам внедрения ЧРП на 16 центральных тепловых пунктах (ЦТП) и одной районной тепловой станции (РТС) г. Москвы получены следующие результаты:
- нормализовано давление в системе водоснабжения, которое по результатам анализа на 15-35% превышало оптимальное, требуемое по условиям водоснабжения;
- повысилась надежность работы оборудования и сокращены затраты на ремонт и обслуживание - за счет исключения динамических воздействий и гидравлических ударов;
- электропотребление насосными установками водоснабжения по всем ЦТП и РТС снизилось в среднем более чем на 45%;
- на 14% снизилось водопотребление водопользователями;
- суммарная ежегодная экономия прямых затрат в ценах января 1998 года составила 1.3 млрд.руб. (или более 220 тыс. долларов США);
- расчетный срок окупаемости затрат - около 8,5 месяцев (по различным ЦТП и РТС от 3,2 до 18,6 месяцев).
![]() | |
1385 × 904 пикс.   Открыть в новом окне |
При использовании ЧРП вместо дроссельного регулятора для изменения режимов работы вентиляторов (вентиляторы, дымососы), при подаче равной 0,5 от номинального значения, потребляемая мощность с ЧРП равна 13% номинальной мощности насоса, при дросселировании - 75%, т.е. экономия составит приблизительно 60% номинальной мощности.
При анализе эффективности применения частотных регуляторов электроприводов насосов используется способ регулирования турбомашин изменением скорости вращения рабочих колес. Как известно из теории подобия турбомашин, сходственные точки рабочих характеристик, рабочие характеристики при изменении оборотов рабочего колеса связаны следующими соотношениями: напор пропорционален квадрату оборотов рабочего колеса, расход - пропорционален оборотам, мощность - пропорциональна кубу оборотов, кпд для сходственных точек имеют одинаковые значения. Аналогичные соотношения имеют место, если менять не обороты, а наружный диаметр рабочих колес. Но такой подход можно использовать в диапазоне изменений диаметров до 10-15% от номинального значения, так как в расчетах начинает сказываться влияние величины входного диаметра рабочего колеса насоса.
Необходимо отметить, что насосы и вентиляторы являются основным электропотребляющим оборудованием объектов коммунального хозяйства. От их правильного подбора, технически грамотной эксплуатации и применения экономичных способов регулирования зависит экономичность работы всей системы. Наибольшие потери возникают при неноминальных режимах эксплуатации этого оборудования!
Частотно регулируемый электропривод быстро окупает себя, если правильно подобранные и частично загруженные на номинальную производительность насосы большую часть времени работают при пониженных подачах.
Оценка экономического эффекта при использовании ЧРП, работающих на насосную нагрузку.
Методика оценки эффективности применения ЧРЭП приведена в "Инструкции по расчету экономической эффективности применения частотно регулируемого электропривода", разработанной АО ВНИИЭ и МЭИ и утвержденной Заместителем Министра топлива и энергетики РФ В.В.Бушуевым; Москва, 1997 год.
Экономический эффект применения ЧРП в насосных станциях ЦТП коммунальной сферы может быть рассчитан по приведенной ниже методике:
1: Регистрируются номинальные данные насоса (Q_ном, H_ ном м.вод.ст., эта_нас. ном) и двигателя (мощность Р_дв.ном., ток I_ном А, частота вращения n_ном, КПД эта_дв.ном., коэффициент мощности cos фи)
2. В часы максимального потребления (для коммунальной сферы это будет 8-10 ч. или 18-20 ч, для административных зданий 13-15 ч.) измеряют напор H м.вод.ст. на входе H_вх и выходе H_вых насоса по манометрам, установленным в системе, 1-3 измерения в течение часа усредняются.
3. В тех же режимах с помощью токоизмерительных клещей измеряют ток двигателя I (А). Результаты усредняются. Проверяется соотношение I <= I_ном
4. Измеряется средний расход за сутки Q_ch м3/час, по разности показаний расходомера в начале Q1 и в конце Q2 контрольных суток.
Q_ср = (Q2 -Q1/24)
5. Рассчитывается минимально необходимый общий напор при наибольшей подаче по формуле (статический + динамический напоры).
H_необх = CN + D, м.вод.ст.
где: N - число этажей (включая подвал - для индивидуальных тепловых пунктов), для группы домов - число этажей самого высокого дома. CN - дополнительный статический напор создаваемый сетевым насосом.
С = 3 - для стандартных домов, С = 3,5 - для домов повышенной комфортности.
D = 10 - для одиночных домов и 15 - для группы домов, обслуживаемых ЦТП.
6. Оценивается требуемый дополнительный напор, создаваемый регулируемым насосом.
![]() | |
216 × 50 пикс.   Открыть в новом окне |
7. Определяется требуемая мощность преобразователя частоты: