Использование современной осветительной арматуры (применение пленочных отражателей на люминесцентных светильниках позволяет на 40% сократить число ламп и следовательно, мощность светильников).
Применение аппаратуры для зонального отключения освещения.
Использование эффективных электротехнических компонентов светильников (балластных дросселей с низким уровнем потерь и др.).
Применение автоматических выключателей для систем дежурного освещения в зонах непостоянного, временного пребывания персонала. Управление включением освещения может осуществляться от инфракрасных и другого типа датчиков, применяемых в системах охранной сигнализации.
Комплексная модернизация системы освещения позволяет экономить до 20-30% электроэнергии при среднем сроке окупаемости 1,5-2 года.
Потенциал экономии электрической энергии в осветительных установках при проведении комплексных мероприятий:
- чистка светильников;
- очистка стекол световых проемов;
- окраска помещений в светлые тона;
- своевременная замена перегоревших ламп со снижением расчетного коэффициента запаса мощности системы при осмотре через интервал времени:
для ЛН - 0.1 тау
для ДРЛ - 0.035 тау
для МГЛ и НЛВД - 0.02 тау (тау - средний срок службы ламп)
и замене вышедших из строя позволяет реализовать потенциал экономии, численные значения которого приведены в Табл. 9.
Таблица 9. Потенциал экономии электрической энергии при применении перечисленных средств
Мероприятия | Экономия ЭЭ % |
1. Переход на светильники с эффективными разрядными лампами (в среднем). | 20-80 |
- использование энергоэкономичных ЛЛ | 10-15 |
- использование КЛЛ (при прямой замене ЛН) | 75-80 |
- переход от ламп ДРЛ на лампы ДНаТ | 50 |
- улучшение стабильности характеристик ламп (снижение коэффициента запаса (ОУ) | 20-30 |
2. Снижение энергопотерь в пускорегулировочной аппаратуре (ПРА): | |
- применение электромагнитных ПРА с пониженными потерями для ЛЛ | 30-40 |
- применение электронных ПРА | 70 |
3. Применение светильников с эффективными КСС и высоким КПД | 15-20 |
4. Применение световых приборов нужного конструктивного исполнения с повышенным эксплуатационным КПД - снижение коэффициента запаса (на 0.2-0.35) | 25-45 |
Электробаланс и оценка режимов электропотребления
Электробаланс коммунального предприятия состоит из прихода и расхода электрической энергии (активной и реактивной). В приход включается электроэнергия, полученная от энергосистемы и выработанная электроустановками предприятия. Учет ведется по показаниям электросчетчиков. Расходная часть электробаланса активной электроэнергии делится на следующие статьи расхода:
- Прямые затраты электроэнергии на - основные технологические процессы объектов ЖКХ и на нужды потребителей.
- Косвенные затраты на основные технологические процессы вследствие их несовершенства или нарушения технологических норм.
- Затраты энергии на вспомогательные нужды (вентиляция, освещение и др.).
- Потери в элементах системы электроснабжения (трансформаторах, линиях, компенсирующих устройствах, двигателях и др.).
- Отпуск сторонним потребителям (столовые, клубы, поселки, магазины, транспорт).
В зависимости от специфики обследуемой организации набор статей может быть различным, может отсутствовать часть статей.
Полученный в результате анализа удельный расход электрической энергии относится на единицу выпускаемой продукции (Гкал отпущенного тепла, м3 воды) и сопоставляется с показателями передовых предприятий.
Задачей составления электробаланса является:
- Выявление и нахождение расходов энергии по статьям 2, 3, 4, 5 с целью четкого выделения ее расхода на основную продукцию коммунального предприятия (на выработку и распределение 1 Гкал, на 1 мЗ очищенной воды и т.п.).
- Выявление микрорайонов с дефицитом электрической мощности, перегруженными сетями и др.
- Определение удельных норм расхода электроэнергии на единицу продукции предприятия (кВт час/Гкал, кВт час/м3) и сравнение с аналогичными затратами других предприятий.
- Выявление возможности сокращения нерациональных расходов энергии путем проведения различных мероприятий по усовершенствованию технологических процессов и снижения нерациональных вспомогательных затрат.
Необходимо также провести экономический анализ режимов суточного электропотребления и режимов работы оборудования с целью определения экономического эффекта от перехода на двухтарифный режим оплаты за пользование электрической энергией. При этом может оказаться целесообразным изменение графика работы отдельного технологического оборудования (сместить на ночной период время включения скважинных насосов, подающих воду в емкости второго подъема, и др.).
Энергоресурсоаудит систем теплоснабжения
Система теплоснабжения состоит из теплогенерирующей установки (котельная или теплоэлектроцентраль), системы магистральных теплотрасс, разводящих тепло по микрорайонам к центральным тепловым пунктам, разводящих теплотрасс, индивидуальных тепловых пунктов и систем отопления зданий.
При проведении энергоаудита систем теплоснабжения города, района выясняются:
- структура построения системы, организационная структура, тип системы (открытая, закрытая);
- источники тепла (марки и количество котлов, их состояние, балансовая принадлежность источников, температурный график и график расхода теплоносителя, режимы эксплуатации, способ регулирования системы отопления в зависимости от температуры окружающей среды, способ и характеристики водоподготовки);
- общая тепловая нагрузка на отопление, горячее водоснабжение и вентиляцию, климатические характеристики и расчетная температура);
- тепловые сети (схемы теплотрасс, обеспеченность требуемых напоров у потребителя, состояние трубопроводов и их теплоизоляционных и антикоррозионных покрытий, наличие гидроизоляции, потери теплоносителя, аварийность на 1 км тепловых сетей, сравнение нормативных и фактических теплопотерь);
- схема теплоснабжения с указанием распределения потоков энергоресурсов, районов с дефицитом обеспеченности энергоресурсами;
- размещение, состояние и характеристики тепловых пунктов и насосных станций (типы водоподогревателей, наличие и характеристики отложений в них, оснащенность тепловых пунктов средствами борьбы с отложениями, оснащенность контрольно-измерительными приборами, средствами учета расхода энергоресурсов, наличие автоматических систем регулирования);
- распределение тепла по группам потребителей (население, бюджетная сфера, промышленность, сфера обслуживания);
- состояние диспетчеризации и автоматизации систем сбора информации;
- общие характеристики теплопотребления жилищного фонда и общественных зданий, расчетные и фактические нагрузки, обеспеченность энергоресурсами;
- характеристики и состояние внутридомовых инженерных сетей, оснащенности их средствами автоматического регулирования и учета потребления энергоресурсов, тип и состояние отопительных приборов, наличие отложений, качество обслуживания потребителей, качество работы систем, состояние диспетчеризации, организационная структура управления, соотношение нормативного и фактического потребления энергоресурсов.
Утепление и уплотнение ограждающих конструкций зданий
Через ограждающие конструкции зданий в атмосферу теряется большая часть тепловой энергии. На отопление и вентиляцию зданий различного назначения расходуется около 40% всех расходуемых топливных энергетических ресурсов (ТЭР). Потери тепла через наружные стены, в зависимости от высоты и конструкции строения, составляют в пределах 20-60% от общего расходуемого тепла. На долю световых проемов (окна, двери) зданий, отвечающих ранее действующим СНиП II-3-79, приходится около 80% всех теплопотерь здания.
Однослойные бетонные конструкции, которые изготавливались большинством предприятий строй индустрии, не соответствуют современным энергетическим требованиям (требованиям энергосбережения).
Переход к применению трехслойных конструкций с эффективной теплоизоляцией позволит получить в расчете на 1 млн. м2 вводимой в эксплуатацию общей площади годовую экономию в пределах 10-12 тыс. тонн условного топлива.
Потери тепла через оконные проемы в 4-6 раз выше, чем через стены. Применение двойного и тройного остекления позволит в 1,5 - 2,0 раза сократить указанные потери. Размещение между рамами окон дополнительного слоя пленки с покрытием, отражающим инфракрасное излучение из помещения и увеличивающей термическое сопротивление пространства между стеклами, почти в четыре раза снижает теплопотери через окна. Измерения тепловых потоков от ограждения здания с помощью инфракрасной аппаратуры показывают, что при этом практически исчезает разница между излучением от стен и окон.
Проблему снижения теплопотерь через оконные проемы необходимо решать комплексно с проблемой вентиляции квартир.