ГОСТ 31610.28-2012/IEC 60079-28:2006 Взрывоопасные среды. Часть 28. Защита оборудования и передающих систем, использующих оптическое излучение стр. 4

Электрические цепи, например, ограничители тока и/или напряжения, установленные между источником оптического излучения и источником электрической мощности, способны обеспечить защиту от перегрузки, как искробезопасные цепи.
Защита от перегрузки должна быть обеспечена в той степени, в какой это необходимо для предполагаемого уровня защиты оборудования (см. IEC 60079-11). Например, для оборудования Ga ограничители тока и/или напряжения должны обеспечивать защиту от перегрузки при двух учитываемых неисправностях ограничителя тока и/или напряжения. Для оборудования Gb требование может быть снижено до одной неисправности. Для оборудования Gc номинальные характеристики должны быть приняты без допуска каких-либо неисправностей. Тепловое разрушение некоторых оптических источников малой мощности, таких как светодиоды, допустимо для обеспечения защиты от перегрузки оборудования с любым уровнем защиты.

5.3 Требования к оптическому излучению с защитой "ор рr"

5.3.1. Общие требования
При этом виде защиты излучение должно быть заключено внутри оптического волокна или другой передающей среды и, при этом, не должно выходить за пределы этой изоляции. В этом случае характеристики изоляции определяют уровень безопасности системы.
Анализ риска позволяет установить требования безопасности на основе предполагаемых условий (условий неисправности или нормальных условий эксплуатации).
Оптическое волокно может использоваться в ситуациях, когда не существует заранее заданных условий, то есть, когда внешнее воздействие может вызвать разрушение защитного барьера. Дополнительные средства защиты (например, прочная кабельная проводка, кабелепровод или кабельный канал) следует использовать, когда внешние воздействия могут вызвать разрушение в нормальных или аварийных условиях эксплуатации. Защитные меры, необходимые для предупреждения пробоя и выхода излучения, могут быть определены на основе анализа риска.
Если используются оболочки, допускается нахождение источника воспламенения внутри оболочки без воспламенения атмосферы снаружи, при условии, что они отвечают требованиям соответствующих стандартов по видам защиты (серия IEC 60079).
5.3.2 Излучение внутри волокна и т.д. (механическое повреждение исключается)
Оптическое волокно предотвращает выход оптического излучения в атмосферу в нормальных условиях эксплуатации. В случае предполагаемых неисправностей это может быть обеспечено применением дополнительного экранирования, кабелепровода, кабельного лотка или кабельного канала.
5.3.3 Излучение внутри оболочек
Воспламеняющее излучение внутри оболочек допускается, если оболочка соответствует требованиям к признанным видам взрывозащиты для электрооборудования, в котором может присутствовать источник воспламенения (взрывонепроницаемая оболочка "d", оболочка с продувкой под давлением "р", оболочка с ограниченной вентиляцией) в соответствии со стандартами серии IEC 60079. Однако необходимо учитывать, что при любом выходе излучения за пределы оболочки должна быть предусмотрена защита оборудования в соответствии с настоящим стандартом.

5.4 Блокировка оптического излучения разрывом волокна "op sh"

Этот вид защиты применяется, когда излучение не является искробезопасным. Размыкающая блокировка срабатывает, когда защита изоляцией нарушается и излучение становится неограниченным за значительно более короткое время, чем время задержки воспламенения.
Размыкающая блокировка должна действовать в соответствии с требованиями, определенными при анализе риска. Методы, указанные в соответствующих стандартах (например, IEC 61508, IEC 61511) могут быть использованы для анализа эксплуатационных характеристик оборудования, чтобы установить коэффициент готовности или коэффициент снижения риска в зависимости от уровня защиты оборудования, как показано в таблице 3.
Таблица 3 - Коэффициент готовности оптической блокировки или коэффициент снижения риска воспламенения в зависимости от уровня защиты оборудования
Уровень защиты оборудования
Коэффициент готовности (эффективность)
Коэффициент снижения риска
Ga
0,999-0,9999
1000-10000
Gb
0,99-0,999
100-1000
Gc
0,9-0,99
10-100
Примечание - Значения, приведенные в таблице 3, были получены на основе рекомендаций из отчета по проекту SAFEC - Определение уровней безопасности электротехнических устройств, применяемых в потенциально взрывоопасных средах (Уилдей, 2000).
В случаях, когда с помощью оценки опасности воспламенения (см. приложение С) может быть доказано, что условия воспламенения не возникают сразу после разрыва волокна, допускается использовать время отключения, применяемое для защиты зрения (см. IEC 60825-2: Безопасность лазерных изделий. Часть 2). Это обычно характерно для оборудования с уровнем защиты Gc, но применимо и к оборудованию с уровнем защиты Gb.
5.5 Соответствие видов защиты заданным требованиям
Если оценка опасности воспламенения, приведенная в приложении С, показывает, что воспламенение от оптического излучения возможно, необходимо применять виды защиты, приведенные в таблице 4.
Таблица 4 - Применение видов защиты для оптических систем в зависимости от уровня защиты оборудования
Вид защиты
Ga
Gb
Gc
Искробезопасное оптическое излучение - вид защиты "op is" (см. 5.2):
- безопасное при двух неисправностях
Да
Да
Да
- безопасное при одной неисправности
Нет
Да
Да
- безопасное в нормальных условиях эксплуатации
Нет
Нет
Да
Защищенная волоконно-оптическая среда с пучком, способным вызвать воспламенение - вид защиты "ор рr" (см. 5.3):
- с дополнительной механической защитой
Нет
Да
Да
- без дополнительной механической защиты
Нет
Нет
Да
Защищенная волоконно-оптическая среда с пучком, способным вызвать воспламенение, блокируемым разрывом волокна - вид защиты "ор sh" (см. 5.4):
- с дополнительной механической защитой
Да
Да
Да
- без дополнительной механической защиты
Нет
Да
Да
Не применяют ни один из видов защиты (неограниченный, способный вызвать воспламенение луч)
Нет
Нет
Нет

6 Типовые проверки и испытания

6.1 Стенд для испытаний на воспламенение

6.1.1 Испытательный сосуд
Диаметр  150 мм, высота над источником воспламенения  200 мм.
6.1.2. Измерения энергии и мощности
Общая погрешность измерения должна быть менее 5%, в том числе с учетом изменения источника оптического излучения.
6.1.3 Критерий воспламенения
Повышение температуры не менее чем на 100 К, определенное с помощью термопары диаметром 0,5 мм на 100 мм выше места перегрева, или появление пламени.
6.1.4 Температура смеси
40 °С или максимальная температура для конкретного применения.
6.1.5 Давление смеси
Давление окружающей среды в соответствии с IEC 60079-0.
6.1.6 Коэффициент безопасности
Применяют коэффициент безопасности 1,5 для непрерывного излучения и 3 для импульсного излучения ко всем результатам (результатам с отсутствием воспламенения), полученным в испытаниях в соответствии с 6.3 и 6.4, прежде чем использовать эти данные, как искробезопасные.
Если во время испытания воспламенения не происходит (например, потому, что значение мощности или энергии не может быть дополнительно увеличено во время испытания), этот коэффициент применяют к самому высокому полученному значению невоспламеняющей интенсивности пучка.
Другой способ получить данные о безопасной интенсивности пучка (включая коэффициент безопасности) - использовать испытательный газ, более чувствительный к воспламенению. Для оборудования, которое будет применяться в среде IIА/Т3, таким испытательным газом может быть этилен при площади пучка до 2 мм2.
Примечание - Поскольку воспламенение горячей поверхностью малой площади - это процесс со значительными статистическими отклонениями, применение коэффициента безопасности оправдано. По этой же причине необходимо проявлять осторожность, оценивая результаты эксперимента как не вызывающие воспламенение, потому что небольшие колебания параметров испытаний могут значительно влиять на результаты.

6.2. Стандартное контрольное испытание

6.2.1 Эталонный газ
Смесь пропана с воздухом в концентрации 5% или 4% объема, см. таблицу А.1 (для испытаний на воспламенение с непрерывным излучением или импульсным излучением с продолжительностью импульса более 1 с, соответственно) или 4% объема (для импульсного излучения с одиночными импульсами продолжительностью менее 1 мс), смесь в состоянии покоя.
6.2.2 Эталонный поглотитель
Поглощение при изучаемой длине волны - более 80%. Поглотитель наносят на конец передающего волокна (оптоволокна) или на инертный субстрат (передача свободного пучка).
Примечание - Испытания показали, что для микросекундных и наносекундных импульсов углеродистый поглотитель имеет наименьшую воспламеняющую энергию импульса (поглощение - 99%, горючий поглотитель, высокая температура разложения) [17, 20, 22].
6.2.3. Контрольное испытание для непрерывного излучения и импульсного излучения с длительностью импульса более 1 с
Облучаемый эталонный поглотитель должен быть физически и химически инертным на протяжении всего испытания. Абсорбционная способность поглотителя должна быть очень высокая, чтобы он действовал почти как абсолютно черное тело.
Конструкцию необходимо испытать с эталонным газом и поглотителем при 40 °С. Для испытания оптоволокна поглотитель должен быть нанесен на конец волокна очень тонким слоем (~10 мкм) (в виде порошка в суспензии, которая затем высушивается). Эталонные значения приведены в приложении (таблица А.1). Конструкция приемлема, если полученные значения воспламенения не превышают более чем на 20% данные таблицы А.1. Поглотитель должен быть неповрежденным в конце испытания.
Для испытания передачи свободного пучка оптического излучения пучок самого малого диаметра должен попадать на плоский слой нанесенного на субстрат или спрессованного облучаемого материала. Контрольные значения для соответствующего диаметра пучка приведены в таблице А.1. Конструкция приемлема, если полученные значения воспламенения не превышают более чем на 20% данные таблицы А.1. Поглотитель должен быть неповрежденным в конце испытания.
6.2.4. Контрольное испытание для импульсного излучения с длительностью импульса менее 1 мс