ГОСТ Р ИСО 5725-3-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений стр. 4

6.4.1 В условиях повторяемости все эти слагаемые остаются неизменными и их суммируют с систематической погрешностью результатов измерений. В промежуточных условиях прецизионности представляет собой определенную величину, вызванную влияющими факторами, остающимися без изменения (состояние 1 в таблице 1), в то время как , и т.д. представляют собой случайные величины, вызванные изменениями влияющих факторов (состояние 2 в таблице 1). Они больше не являются составляющими систематической погрешности, однако увеличивают значение стандартного отклонения промежуточной прецизионности таким образом, что оно становится больше стандартного отклонения повторяемости.
6.4.2 Влияющие эффекты, обусловленные различиями между операторами, отображают персональные навыки при выполнении измерений (например, в считывании показаний шкалы и т.д.). Некоторые из этих различий можно устранить или уменьшить стандартизацией метода измерений, в частности, четкими и точными описаниями предусматриваемых технологических приемов (выполняемых процедур). Несмотря на это, какая-то систематическая погрешность в результатах измерений, полученных одним оператором, всегда остается, причем она не всегда является постоянной (например, абсолютная величина систематической погрешности будет меняться в зависимости от психического и/или физического состояния оператора в этот день). Такая систематическая погрешность не может быть скорректирована или устранена точной калибровкой. Ее абсолютную величину необходимо снижать путем использования четкой инструкции по выполнению измерений и совершенствования квалификации оператора. В этих условиях эффект смены операторов может рассматриваться как носящий случайный характер.
6.4.3 Влияющие эффекты, вызванные применением разного оборудования, обусловлены различиями в местах установки оборудования, особенно флуктуациями показаний и т.д. Некоторые из таких эффектов могут быть скорректированы точной калибровкой. Расхождения, обусловленные различиями систематического характера в оборудовании, также следует исправлять путем калибровки, и такого рода процедура должна быть предусмотрена в стандартном методе. Например, смена партий реактива может быть нивелирована также путем калибровки оборудования с использованием соответствующего стандартного образца, который должен выбираться в соответствии с рекомендациями Руководства ИСО 33* [2] и Руководства ИСО 35* [З]. Остаточную погрешность оборудования, которое было калибровано с применением стандартного образца, рассматривают как случайную.
* В России - согласно принятым методикам поверки (калибровки) средств измерений соответствующего типа.
6.4.4 Влияющие эффекты, обусловленные временем, могут быть вызваны различиями в условиях окружающей среды, такими как изменения комнатной температуры, влажности и т.д. Стандартизация условий окружающей среды сводит к минимуму влияние данных эффектов.
6.4.5 Влияние квалификации или усталости оператора может рассматриваться как взаимодействие факторов оператора и времени. Функционирование комплекта оборудования может быть различным в начале и после его использования в течение многих часов: это пример взаимодействия факторов оборудования и времени. Когда численность операторов невелика, а количество комплектов оборудования еще меньше, эффекты, являющиеся следствием данных факторов, могут быть оценены как фиксированные (не случайные).
6.4.6 Процедуры, представленные в ГОСТ Р ИСО 5725-2, разработаны с учетом допущения, что распределение лабораторных составляющих систематической погрешности является приближенно нормальным, но на практике они (процедуры) используют для большинства распределений других типов при условии, что данные распределения являются унимодальными. Дисперсия носит название межлабораторной дисперсии и выражается в виде:
. (5)
Дисперсия будет также включать эффекты от изменений, обусловленных оператором, оборудованием, временем и окружающей средой. Дисперсии промежуточной прецизионности можно рассчитать на основе данных эксперимента вложенного типа по оценке прецизионности с использованием разных операторов, разного времени измерений, разных условий окружающей среды и т.д. При этом рассматривают как величину, состоящую из независимых составляющих, представляющих лабораторию, оператора, день эксперимента, условия окружающей среды и т.д.
303 × 25 пикс.     Открыть в новом окне
(6)
Дисперсии обозначают следующим образом:
;
;
и т.д. (7)
оценивают на практике как , и подобные же оценки промежуточной прецизионности могут быть получены на основании соответствующим образом поставленных экспериментов.
6.5 Составляющая погрешности
6.5.1 Данная составляющая представляет случайную погрешность, имеющую место в каждом результате измерений, и процедуры, представленные в настоящем стандарте, разрабатывались при допущении, что распределение этой случайной величины является приближенно нормальным. Однако на практике их (процедуры) используют для большинства распределений при условии, что распределения являются унимодальными.
6.5.2 В пределах отдельно взятой лаборатории ее дисперсия носит название внутрилабораторной и ее выражают в виде
. (8)
6.5.3 Можно ожидать, что будет иметь разные значения в разных лабораториях вследствие таких различий, как различия в квалификации операторов, однако в настоящем стандарте допускается, что для должным образом стандартизованного метода измерений такие различия между лабораториями должны быть невелики и это может быть оправданием для установления общего значения внутрилабораторной дисперсии для всех лабораторий, пользующихся этим методом. Это общее значение, которое оценивается средним значением внутрилабораторных дисперсий, называется "дисперсией повторяемости" и ее обозначают :
. (9)
Данное среднее значение берут по всем лабораториям, принимавшим участие в эксперименте по оценке точности и оставшимся после исключения выбросов.

7 Выборусловийизмерений

7.1 При применении метода измерений в пределах лаборатории возможны многие условия измерений, а именно:
a) условия повторяемости (четыре фактора неизменны);
b) несколько промежуточных условий прецизионности с одним изменяющимся фактором;
c) несколько промежуточных условий прецизионности с двумя изменяющимися факторами;
d) несколько промежуточных условий прецизионности с тремя изменяющимися факторами;
e) промежуточные условия прецизионности с четырьмя изменяющимися факторами.
В стандарте на метод измерений нет необходимости (или даже возможности) устанавливать все возможные показатели прецизионности, хотя стандартное отклонение повторяемости должно определяться всегда. При выборе промежуточных мер прецизионности обычно встречающиеся условия должны определяться общей коммерческой практикой, и часто бывает достаточно задать всего лишь один соответствующий промежуточный показатель прецизионности с подробным описанием конкретных условий измерений, ассоциирующихся с ним. Значения влияющих факторов в условиях выполнения измерений, которые могут изменяться, должны быть точно определены; в частности, для промежуточных условий прецизионности с различием по фактору "время" должен быть задан практический средний интервал между последовательно выполняемыми измерениями.
7.2 Предполагается, что стандартизованный метод измерений будет иметь наименьшую систематическую погрешность и что эта систематическая погрешность, присущая самому методу, должна быть компенсирована техническими средствами. Поэтому в настоящем стандарте рассматривают только систематическую погрешность, обусловленную условиями измерений (см. 7.1).
7.3 Изменение в факторах условий измерений (время, калибровка, оператор и оборудование) по сравнению с условиями повторяемости (т.е. от состояния 1 в состояние 2 согласно таблице 1) увеличит изменчивость результатов измерений. Однако ожидаемое среднее значение ряда результатов измерений будет иметь меньшую систематическую погрешность по сравнению с систематической погрешностью в условиях повторяемости. Увеличение стандартного отклонения для промежуточных условий прецизионности можно преодолеть, не полагаясь на единичный результат измерений, а используя среднее значение нескольких результатов измерений в качестве окончательно приводимого результата.
7.4 На практике выбор факторов, влияние которых подлежит изучению при стандартизации метода измерений, будет зависеть как от желаемой прецизионности (стандартного отклонения) окончательного результата, так и от стоимости выполнения измерений.

8 Внутрилабораторное исследование и анализ промежуточных показателей прецизионности

8.1 Простейший подход
Простейший метод оценки стандартного отклонения промежуточной прецизионности в пределах одной лаборатории состоит в отборе одной пробы (или, для испытаний с разрушением образца, одного комплекта предположительно идентичных образцов) и выполнении серии из измерений с изменением фактора(ов) между ними. Рекомендуется, чтобы было не менее 15. Это может быть неприемлемо для лаборатории, и данный метод оценки промежуточных показателей прецизионности в пределах лаборатории не может быть признан эффективным в сравнении с другими процедурами. Анализ элементарен, однако и он может быть полезен для исследования промежуточной прецизионности с различием по фактору "время" путем выполнения последовательных измерений на одном и том же образце последовательно день за днем либо для исследования влияния фактора "калибровка" между измерениями.
Для идентификации потенциальных выбросов рекомендуется построить график в функции номера измерения , где представляет собой -й результат измерений из повторных результатов, а - среднее значение из повторных результатов. Более формальная проверка выбросов состоит в применении критерия Граббса, как это представлено в 7.3.4 ГОСТ Р ИСО 5725-2.
Оценка стандартного отклонения промежуточнойпрецизионности при изменяющихся факторов выражается в виде
, (10)
где в скобках должны быть проставлены символы, обозначающие промежуточные условия прецизионности.
8.2 Альтернативный метод
8.2.1 Альтернативный метод подразумевает групп измерений, каждая из которых включает в себя повторных результатов. Например, в одной лаборатории испытывают материалов, после чего факторы промежуточной прецизионности изменяют и материалов испытывают повторно, при этом процедуру повторяют до тех пор, пока не будет иметься в наличии результатов измерений по каждому из материалов. Каждая группа из результатов измерений должна быть получена на одном идентичном образце или пробе (или на комплекте предположительно идентичных образцов или проб в случае испытаний с разрушением образцов), но при этом не требуется, чтобы материалы были идентичными. Необходимо только, чтобы все материалов находились в таком диапазоне уровней испытаний (значений испытуемого параметра), в пределах которого можно использовать одно значение стандартного отклонения промежуточной прецизионности при изменяющихся факторах. Рекомендуется, чтобы значение было не менее 15.
Пример
Один оператор выполняет одно измерение на каждом из материалов, после чего это повторяет второй оператор, а возможно, и третий оператор, и так далее, что позволяет рассчитать .
8.2.2 Для идентификации потенциальных выбросов рекомендуется построить график в функции номера материала , где представляет собой -й результат измерений, а - среднее значение результатов по -му материалу. Более формальная проверка выбросов состоит в применении критерия Граббса, как это представлено в 7.3.4 ГОСТ Р ИСО 5725-2, либо для каждой группы в отдельности, либо для всех результатов измерений в совокупности.
Оценка стандартного отклонения промежуточнойпрецизионности при изменяющихся факторах в таком случае выражается в виде
217 × 53 пикс.     Открыть в новом окне
.(11)
Для (т.е. для двух результатов измерений по каждому материалу) формула упрощается, см. (12).
. (12)
8.3 Влияние условий измерений на окончательный результат