4.4.5 Раствор, содержащий приблизительно 1 мг/мл газообразных компонентов
Для газов, например оксида этилена, градуировочный раствор с высоким значением массовой концентрации может быть приготовлен следующим образом. При атмосферном давлении получают чистый газ заполнением небольшого пластикового мешка из газового баллона. Газонепроницаемым микрошприцем (см. 5.8) отбирают 1 мл чистого газа и закрывают клапан шприца. В виалу*(5) подходящей вместимости вводят 2 мл растворителя для проведения десорбции и закрывают крышку. Конец иглы шприца вводят через мембранную крышку в растворитель. Клапан шприца открывают и слегка перемещают поршень, чтобы ввести растворитель для десорбции в шприц. При растворении газа в растворителе для десорбции создается вакуум, и шприц заполняется растворителем. Раствор возвращают в виалу. Шприц промывают полученным раствором дважды, и смывы помещают в виалу. Массу добавленного газа вычисляют с использованием газовых законов (1 моль газа при нормальных условиях занимает объем 22,4 л).
4.4.6 Раствор, содержащий приблизительно 10 мкг/мл газообразных компонентов
Для газов, например оксида этилена, градуировочный раствор с низким значением массовой концентрации может быть приготовлен следующим образом. При атмосферном давлении получают чистый газ заполнением небольшого мешка из пластика или другого инертного материала из газового баллона, отбирают газонепроницаемым микрошприцем (см. 5.8) 10 мкл чистого газа и закрывают клапан шприца. В виалу подходящей вместимости вводят 2 мл растворителя для проведения десорбции и закрывают крышку. Конец иглы шприца вводят через мембранную крышку в растворитель. Клапан открывают и слегка перемещают поршень, чтобы ввести растворитель для десорбции в шприц. При растворении газа в растворителе для десорбции создается вакуум, и шприц заполняется растворителем. Раствор помещают в виалу. Шприц промывают полученным раствором дважды, и смывы помещают в виалу. Массу добавленного газа вычисляют с использованием газовых законов (1 моль газа при нормальных условиях занимает объем 22,4 л).
4.5 Градуировочные газовые смеси
Приготавливают градуировочные газовые смеси (для 4.6 и приложения С) с известными значениями массовой концентрации определяемого(ых) соединения(й) стандартизованными методами. Для этого подходят методы, приведенные в [14], [15] и [16]. Если методика приготовления не применяется в условиях, которые позволяют установить непрерывную прослеживаемость получаемых значений массовой концентрации к первичным эталонам, то полученные значения должны быть подтверждены независимым методом.
4.6 Сорбционные трубки для градуировки, используемые для определения эффективности десорбции (для 7.5)
Сорбционные трубки для градуировки подготавливают путем прокачивания через чистые сорбционные трубки точно известного объема градуировочной газовой смеси, например с помощью насоса и регулятора массового расхода. При этом объем отобранного воздуха не должен превышать объем "проскока" для системы аналит - сорбент (см. приложение С). После прокачивания градуировочной газовой смеси сорбционную трубку отсоединяют и герметично закрывают.
Если получение градуировочных газовых смесей практически невыполнимо, то сорбционные трубки для градуировки могут быть приготовлены путем введения в чистые сорбционные трубки жидкости с помощью шприца при условии, что точность методики введения устанавливается с использованием методик, которые при введении шприцем позволяют получить значения массовой концентрации, прослеживаемые к первичным эталонам массы и(или) объема, или точность может быть подтверждена с помощью независимой методики.
Сорбционные трубки для градуировки подготавливают путем введения с помощью шприца аликвот градуировочных растворов (см. 4.4) точно известной массы или объема в чистые сорбционные трубки. Сорбционную трубку подсоединяют к тройнику, один из концов которого снабжен мембранной крышкой или устройством ввода проб газового хроматографа, через которое продувают инертный газ-носитель при расходе 100 мл/мин. Вводят шприцем аликвоты от 1 до 4 мкл градуировочного раствора через мембранную крышку и продувают газ-носитель в течение 5 мин. Затем трубку отсоединяют и герметично закрывают.
5 Аппаратура
Кроме обычного лабораторного оборудования, используют следующую аппаратуру.
5.1 Сорбционная трубка
Сорбционная трубка для отбора проб обычно представляет собой стеклянную трубку с запаянными концами длиной 70 мм, внешним диаметром 6 мм и внутренним диаметром 4 мм, имеющую две секции с сорбентом. При использовании древесного угля основная секция с сорбентом содержит 100 мг активированного угля, а контрольная - 50 мг. Секции отделены друг от друга, а их содержимое удерживается с помощью инертного материала, например пробок из стекловолокна (предпочтительно спланированных).
Стеклянные трубки хранят в защитных футлярах для предотвращения повреждений.
Эффективность десорбции D для каждой партии трубок проверяют одним из методов, приведенных в 4.6. Если D составляет менее 0,75 (75%), то трубки не используют.
Серийно выпускаются трубки, соответствующие требованиям настоящего стандарта; они также могут быть подготовлены пользователем. Используют также металлические трубки с подходящими пробками. Трубки, подготовленные пользователем, можно использовать, только если подтверждены воспроизводимость и постоянство их сорбционных свойств.
Если смеси неполярных аналитов десорбируют чистым сероуглеродом, то взаимное влияние их содержаний на D обычно незначительно. Если состав смеси полярных и неполярных аналитов приблизительно известен, то значения D определяют с использованием подобной смеси. Иногда, используя один растворитель для десорбции, невозможно добиться эффективности десорбции более 75% для всех компонентов подобной смеси. Если может быть установлено постоянство D и отсутствует более подходящий растворитель, то принимают полученную эффективность десорбции, хотя по возможности предпочтение отдают отбору второй пробы и оптимизации условий десорбции полярных и неполярных аналитов.
Примечания
1 Вместо серийно выпускаемых двухсекционных трубок могут быть использованы две последовательно соединенные односекционные трубки. Такая конструкция имеет преимущество, так как после отбора проб нет необходимости хранить трубки при температуре ниже окружающей среды для предотвращения миграции сорбированных соединений из одной секции в другую.
2 Наряду с пробками из спланированного стекловолокна используют пробки из полиуретана, однако известно, что последние могут сорбировать некоторые пестициды [3], на определение которых не распространяется настоящий стандарт.
3 Если необходимо отбирать высоколетучие соединения в течение длительных периодов или при высоком объемном расходе, то для отбора проб могут быть использованы пробоотборные устройства большего размера при условии, что изменение размеров трубки и количества активированного угля в ней пропорционально размерам стандартного устройства для обеспечения такого же номинального линейного потока и времени контакта с сорбентом.
5.2 Пробки, плотно прилегающие к концам сорбционной трубки (см. 5.1), во избежание утечек или загрязнения изготовляют из инертного материала, такого как полиэтилен.
5.3 Пробоотборное устройство (насос для отбора проб)*(6), соответствующее требованиям ЕН 1232 или эквивалентное.
Насос для отбора проб должен соответствовать национальным требованиям безопасности.
5.4 Трубки из резины или пластика длиной 90 см подходящего диаметра для обеспечения герметичного соединения насоса и сорбционной трубки или ее держателя, если он применяется. Для прикрепления трубки с сорбентом и соединительной трубки к лацкану одежды применяют зажимы.
Не рекомендуется использовать соединительные трубки выше по потоку от сорбента, поскольку может произойти потеря пробы.
5.5 Газовый хроматограф с пламенно-ионизационным, фотоионизационным, масс-спектрометрическим или другим подходящим детектором, способным обнаружить введение 0,5 нг толуола при отношении сигнал - шум не менее 5:1.
Колонка газового хроматографа должна позволять разделять аналиты от других компонентов. Подходящими примерами являются колонки из кварцевого стекла размерами 50 м х 0,22 мм с неподвижной фазой ВР-1 или ВР-10. Толщина слоя неподвижной фазы составляет от 0,5 до 2,0 мкм. Обычными условиями работы этих колонок может быть режим программирования температуры от 50°С до 200 °С, скорости нагрева 5°С/мин и расходе гелия, используемого в качестве газа-носителя, от 0,7 до 0,8 мл/мин. Примеры эквивалентности газохроматографических неподвижных фаз приведены в приложении В.
5.6 Автоматическое пробоотборное устройство
Серийно выпускаемые автоматические пробоотборные устройства, оснащенные кюветами для жидкостного охлаждения проб, используемые для анализа летучих растворителей.
5.7 Мерные колбы 1-го класса точности, известной вместимости, используемые для приготовления градуировочных растворов смесей (см. 4.4).
5.8 Газонепроницаемые микрошприцы вместимостью 1,0 мл и 10 мкл с ценой деления 0,1 мл и 0,1 мкл соответственно.
5.9 Расходомер пузырькового типа или другое подходящее устройство измерения расхода насоса для отбора проб. Расходомер должен быть поверен.
Примечание - Применение неповеренных расходомеров для градуировки насосов может привести к систематической погрешности до нескольких десятков процентов.
6 Отбор проб
6.1 Градуировка насоса
Используя шкалу насоса, регулируют расход через типовую сорбционную трубку вместе с подсоединенной к ней трубкой так, чтобы рекомендуемый объем пробы отбирался за установленное время. Расход не должен превышать 200 мл/мин (см. приложение С и [18]). Объем пробы не должен превышать объема "проскока" (см. 6.2 и приложение С). Насос градуируют с использованием подходящего внешнего поверенного расходомера (см. 5.9). На одном конце поверенного расходомера поддерживают атмосферное давление для обеспечения правильной работы. Дополнительная информация по калибровке насоса приведена в [4].
6.2 Общие положения
Выбирают пробоотборное устройство, подходящее для отбираемого соединения или смеси соединений. Типы сорбентов приведены в приложении А. Опубликованные методы отбора и анализ проб конкретных ЛОС приведены в таблицах 1 и 2. В [2] и [12] приведена информация по соответствующему расходу и рекомендуемому времени отбора проб для конкретных ЛОС. Для большинства ЛОС при отборе пробы используются сорбционные трубки стандартных размеров (см. 5.1), через которые может быть пропущен объем воздуха не менее 10 л без "проскока". Для некоторых более летучих ЛОС гарантированный объем пробы может быть значительно меньше, а сорбционная трубка для градуировки - не иметь сорбционной емкости для отбора в течение 8 ч. В этом случае среднее взвешенное за 8 ч значение массовой концентрации может быть получено по результатам двух или более последовательных отборов проб, или может быть использована сорбционная трубка большего размера.
Отламывают оба конца сорбционной трубки для отбора проб таким образом, чтобы диаметр получившихся отверстий составлял не менее половины внутреннего диаметра трубки. Сорбционную трубку устанавливают в защитный держатель и с помощью соединительной трубки подсоединяют к насосу для отбора проб (в выключенном состоянии) так, чтобы контрольная секция (50 мг сорбента) располагалась ближе к насосу.
При отборе проб на рабочем месте укрепляют пробоотборное устройство*(7) в зоне дыхания (в соответствии с ЕН 1540). При отборе проб в производственном помещении выбирают соответствующее фиксированное место для установки пробоотборного устройства. В любом случае пробоотборное устройство должно быть укреплено в вертикальном положении для сведения к минимуму неравномерного распределения сорбента в трубке.
Включают насос и начинают отбор проб. При включении насоса фиксируют время включения и расход воздуха или регистрируют показания по шкале насоса. По окончании отбора проб отмечают и записывают время, снимают и регистрируют значение расхода или регистрируют показание и выключают насос. Обычно объем пробы рассчитывают на основе среднего между начальным и конечным значениями расхода, умноженного на время работы, или для насоса с автоматическим регулированием потока на основе зарегистрированных показаний, умноженных на объем за один рабочий ход. Если разница между начальным и конечным значениями расхода составляет более 10%, то пробу отбраковывают.
Отсоединяют трубку или трубки с пробой и герметично закрывают оба конца каждой трубки пробками (см. 5.2). Пробки плотно прижимают. Трубки с пробами должны быть маркированы уникальным способом, например путем гравировки. Для маркировки трубок не используют краски и маркеры, содержащие растворители, а также приклеивающиеся бирки.
Если необходимо привести содержание аналита к определенным условиям (см. 8.1, примечание 1) или выразить его содержание в единицах объемной доли (см. 8.2), то в ходе отбора проб периодически отмечают и записывают температуру воздуха и барометрическое давление.
Примечания
1 Эффективность отбора проб будет составлять 100%, если при этом не будет превышена сорбционная емкость сорбента. В ином случае будет происходить "проскок" ЛОС из основной секции в контрольную. Методика определения объема "проскока" приведена в приложении С. В [2] и [12] приведены ориентировочные значения объемов "проскока" для отдельных компонентов.
2 Объем "проскока" зависит от температуры окружающего воздуха, относительной влажности, содержания ЛОС и других загрязнителей, а также от расхода воздуха при отборе проб. Увеличение любого из указанных параметров приводит к уменьшению объема "проскока". На практике контрольная секция может быть использована для контроля "проскока". В качестве альтернативы две или несколько трубок могут быть задействованы параллельно для получения проб различных объемов ("распределенные объемы проб").
Для подготовки холостых проб используют трубки, идентичные трубкам, используемым для отбора ЛОС. На месте отбора с этими трубками обращаются так же, как с трубками для отбора проб, за исключением самого процесса отбора проб. Полученные трубки маркируют как холостые пробы.