7.1 Меры безопасности
В настоящем стандарте не приведены требования безопасности, которые следует соблюдать при его применении. Пользователь стандарта несет ответственность за разработку соответствующих мер безопасности и охраны здоровья с учетом требований законодательных актов.
7.2 Хранение
Если анализ проб не проводят в ближайшие 8 ч после их отбора, то пробы помещают в чистый свободный от выделений герметичный контейнер из стекла или металла.
Пробы высоколетучих соединений, таких как винилхлорид, хранят в сухом льду или морозильной камере в зависимости от их летучести. Для менее летучих соединений достаточно охлаждения до температуры менее 5°С.
7.3 Десорбция
Пробы анализируют как можно быстрее.
В каждом случае десорбцию проводят в чистой атмосфере в вытяжном шкафу. Холостые пробы десорбируют таким же образом, как и обычные.
Пипеткой отбирают 1,0 мл растворителя для десорбции (см. 4.2), помещают его в виалу подходящей вместимости и сразу же ее закрывают. Сорбционную трубку, содержащую пробу в основной (большей) секции помечают, а затем открывают. Удаляют пробку из стекловолокна и помещают ее в отходы. Открывают виалу с растворителем для десорбции, пересыпают в него сорбент из основной секции трубки и вновь закрывают. Для достижения максимальной десорбции периодически встряхивают виалу в течение 30 мин. Повторяют те же самые действия для контрольной секции трубки, используя при этом другую виалу.
При применении трубок, содержащих более 100 мг + 50 мг сорбента, используют виалу большей вместимости и пропорционально больший объем растворителя для десорбции. В особых случаях могут использоваться другие объемы растворителя для десорбции.
При десорбировании проб высоколетучих соединений, таких как винилхлорид, виолу с растворителем для десорбции перед добавлением в него сорбента предварительно охлаждают.
7.4 Анализ
Газовый хроматограф настраивают для анализа ЛОС. Для анализа этих соединений используют различные хроматографические колонки (см. 5.5). Выбор колонки в значительной степени зависит от присутствия соединений, которые могут оказывать мешающие влияния на хроматографический анализ.
В газовый хроматограф вводят градуировочные растворы (см. 4.4) фиксированного объема (от 1 до 5 мкл). При этом используют такую методику введения раствора, которая позволяет получать повторяющиеся по высоте или площади пики.
Примечание - Для серии повторных введений микрошприцем относительное стандартное отклонение должно быть не более %. Для автоматических пробоотборных устройств оно должно быть не более %.
В газовый хроматограф вводят раствор десорбированной пробы такого же фиксированного объема. По градуировочному графику определяют значение массовой концентрации аналита в десорбированной пробе. Пробы, используемые для определения эффективности десорбции, и холостые пробы анализируют тем же самым способом.
Соответствие времени удерживания, полученного на отдельной колонке, не должно быть единственным критерием идентичности. Индексы удерживания на фазах ВР-1 и ВР-10 для приблизительно 160 ЛОС приведены в таблице 3. Они могут быть использованы для определения порядка элюирования на этих фазах или эквивалентных им фазах, однако не являются окончательными, так как точные значения зависят от режима температурного программирования, расхода газа-носителя и других факторов.
Если контрольная секция содержит более 10% количества аналита или любого компонента ЛОС, то пробу отбраковывают как недостоверную [2].
7.5 Определение эффективности десорбции
Эффективность десорбции ЛОС D зависит от типа и партии используемого сорбента. Поэтому для каждого типа сорбента и каждого аналита необходимо определить D во всем диапазоне измерений массовой концентрации аналита в пробе. Пробы подготавливают в соответствии с 4.6, проводят десорбцию в соответствии с 7.3 и анализ в соответствии с 7.4. Таким образом, D представляет собой отношение количества извлеченного вещества к количеству введенного вещества.
Альтернативой методике введения жидкости шприцем (см. 4.6, 7.3, 7.4) является метод фазовых равновесий, заключающийся в добавлении точно известных объемов градуировочных растворов к сорбенту в неиспользованных чистых сорбционных трубках (или чистого сорбента в растворитель для десорбции) и последующем определении разности концентраций до и после добавления.
Если данные по эффективности десорбции могут быть представлены в виде однородной совокупности, то D вычисляют как среднее суммарное значение. В ином случае данные анализируют и определяют возможность построения на их основе модели с использованием уравнения сглаженной нелинейной кривой. При этом D увеличивается пропорционально отношению массы аналита к массе сорбента. В таких случаях D оценивают с использованием этой кривой. Справочные значения D для отдельных соединений приведены в [2]. Действительные значения должны всегда определяться во время анализа.
Примечания
1 Эффективность десорбции зависит от массы соединения, загружаемого в сорбционную трубку; колебания обычно значительны в тех случаях, когда среднее значение составляет менее 90%.
2 При использовании методов введения жидкости шприцем и фазовых равновесий может не учитываться высокая влажность, имевшая место во время отбора проб. Адсорбированный водяной пар является фактором, который может быть воспроизведен добавлением воды к сорбенту. Влияние влаги должно быть исследовано, когда отбираются растворимые в воде соединения при высокой влажности воздуха.
3 Метод фазовых равновесий может привести к получению некорректных значений D [5]-[8].
8 Вычисление результатов
8.1 Общие положения
Для логарифмически преобразованных величин зависимости десятичного логарифма высоты или площади пика аналитов строят градуировочный график с учетом поправки на уровень холостых показаний по вертикальной оси от десятичного логарифма массовой концентрации аналита в микрограммах на миллилитр в вводимой аликвоте градуировочных растворов смеси аналитов.
Примечание - Другие методы подгонки по градуировочным точкам градуировочных графиков, такие как линейные, экспоненциальные или полиномиальные, более или менее применимы в зависимости от линейности выходного сигнала детектора и доступности программного обеспечения.
8.2 Массовая концентрация аналита
Массовую концентрацию аналита в отобранном воздухе , вычисляют по формуле
, (1)
где - масса аналита в реальной пробе (основная секция), определенная в соответствии с 7.3, мг;
- масса аналита в реальной пробе (контрольная секция), определенная в соответствии с 7.3, мг;
- масса аналита в холостой пробе, мг;
D - эффективность десорбции при уровне загрузки трубки для отбора проб, соответствующем , доля;
V- объем отобранной пробы, л.
Примечание - Если необходимо привести концентрации к условиям 25°С и 101 кПа, то применяют формулу
, (2)
где - массовая концентрация аналита в отобранном воздухе, приведенная к определенным условиям, ;
p - давление отбираемого воздуха, кПа;
Т - температура отбираемого воздуха, °С.
8.3 Объемная доля аналита
Объемную долю аналита в воздухе , ( ), вычисляют по формуле
, (3)
где М - молекулярная масса аналита, г/моль;
24,5 - молярный объем при температуре 25°С и давлении 101 кПа.
9 Мешающие вещества
Органические соединения, которые имеют такое же или приблизительно такое же время удерживания, как и анализируемое соединение, влияют на результат газохроматографического анализа. Мешающие влияния могут быть сведены к минимуму путем правильного выбора газохроматографических колонок и условий анализа.