Свод правил по проектированию и строительству СП 23-104-2004 "Оценка шума при проектировании, строительстве и эксплуатации объектов метрополитена" (принят постановлением Госстроя РФ от 9 марта 2004 г. N 19) стр. 14

6) на противоположной точке по оси зала, если на станции имеется только один эскалатор (лестница);
7) на входе (выходе) в переход (если они есть).
При проведении расчетов по формулам (4.4) - (4.6) источники шума следует считать линейными, начиная от входа поезда на станцию до его полной остановки, т.е. по всей длине тормозного пути.
Посадочная платформа находится в зоне действия прямого звукоизлучения подходящего поезда и первых отражений от стен и части сводов над платформами. Контроль этого положения следует подтверждать расчетом радиуса действия прямого звука R, представляющим расстояние, при удалении более которого к центру зала реверберационное поле (т. е. 2-й член формул (4.4) и (4.6)) заведомо превалирует над полем прямого звука,
, (4.7)
определяемого для трех основных диапазонов частот: низких (125-250 Гц), средних (500-1000 Гц) и высоких (2000-4000 Гц).
Частотная характеристика уровня шумового фона акустически необработанного помещения, рассчитанная по формуле (4.6), должна сравниваться с допустимой кривой уровней предельных спектров. Допустимые уровни шума на платформах и вестибюлях станций метрополитена представлены в таблице 4.1. При этом следует учесть, что если расчеты уровней шума для некоторых частот практически совпадут со значениями таблицы 4.1, это является недостаточным, так как мы заведомо пренебрегли шумовым фоном от пассажиров и других составляющих общего шумового режима залов станций метрополитена. Поэтому все расчетные значения L(f) (f - частоты соответствующих октавных полос) должны быть не менее чем на 2-3 дБ ниже соответствующих значений таблицы 4.1. Это требование должно быть особенно тщательно соблюдено для диапазона 125-1000 Гц, так как в данной области частот наблюдается максимальная спектральная плотность разговорной речи.
Таблица 4.1 - Допустимые уровни звукового давления
Среднегеометрические частоты октавных полос, Гц
63
125
250
500
1000
2000
4000
8000
Уровни звука, дБА
Допустимые уровни звукового давления, дБ
94
87
82
78
75
73
71
70
80
Расчет уровней звука по шкале "А", максимально коррелированной с характеристиками слухового восприятия, производится по формуле
, (4.8)
где - рассчитанные уровни звукового давления в октавных полосах частот, дБ;
- поправочные коэффициенты для каждого диапазона частот (дБ), принимаемые по таблице 3.1.
В случае превышения расчетных уровней шума над нормативными, что практически всегда бывает в акустически необработанном помещении, следует производить первую коррекцию проектного решения зала станции (см. структурную схему на рисунке 4.2).
4.3.3 Первая коррекция проекта (третий этап по рисунку 4.2) базируется на известном факте, что в шумных помещениях с распределенными источниками шума наиболее эффективными средствами борьбы с шумом являются подавление шума в источнике и в ближнем поле (прямой звук и звук, отраженный от ближайших отражающих поверхностей). Методы борьбы с шумом в источнике не входят в компетенцию настоящего документа, так как они в основном включают средства борьбы с виброизлучением конструкций, примыкающих к рельсовому пути. В связи с этим весьма важным для шумоглушения является эффективное покрытие звукопоглощающими конструкциями стен вдоль поездных путей и части потолков (сводов) над ними. Общие требования к звукопоглощающим материалам и конструкциям, допускаемым к применению на станциях метрополитена, изложены в приложении Г.
В приложении Д представлены частотные характеристики КЗП некоторых, наиболее распространенных в практическом применении материалов и конструкций. Рекомендованные места обязательного размещения звукопоглощающих материалов представлены на эскизе рисунка 4.3. После выбора и размещения по схеме рисунка 4.3 звукопоглощающих материалов производится контрольный расчет корректированного уровня звука в характерных точках зала станций метрополитена по формуле (4.6) с учетом нового значения постоянной В. Если и в данных условиях уровни частотной характеристики шума будут превышать соответствующие нормативные значения по таблице 4.1, то следует продолжить процедуру выбора мест размещения и типа звукопоглощающей облицовки, но уже в центральной части зала станции. При этом наиболее эффективными местами их последующего размещения являются боковые поверхности и своды проемов между пилонами (особенно, если они достаточно массивны и площадь их лицевых поверхностей превышает 30-40% площади проема), а также центральная часть потолка зала, где в зависимости от архитектурного решения, могут быть использованы как плоские подвесные звукопоглотители, так и объемные звукопоглотители разной формы [16].
После каждого этапа введения дополнительного звукопоглощения в интерьер помещения делаются контрольные расчеты уровней шумового фона по формуле (4.6), пока на очередном этапе не будут достигнуты нормативные значения уровней шумового фона.
Для ориентированных расчетов минимально необходимого общего фона звукопоглощения зала станции можно использовать следующие формулы:
(4.9)
где ;
- допустимые уровни шумового фона, определяемые с помощью таблицы 4.1.
4.3.4 На четвертом этапе акустического проектирования производится контрольный расчет частной характеристики времени реверберации на предмет соответствия разработанного акустического решения отделки ограждений помещения станций рекомендованным зонам оптимумов T(V) на рисунке 4.1. Расчет производится по известной формуле Эйринга:
, (4.10)
где V - общий воздушный объем зала станции в уровне посадочной платформы, ;
S - общая площадь внутренних поверхностей зала, ;
- функция среднего коэффициента звукопоглощения , равная:
; (4.11)
n - коэффициент, учитывающий поглощение звука в воздухе зала станции, .
Коэффициент n обычно рассчитывается для частот 2000 и 4000 Гц из диапазона частот, принятых для расчета времени реверберации (125-4000 Гц). Остальные обозначения аналогичны приведенным в формулах (4.1), (4.2).
В приложении Е приведены данные об ЭЗП стоящих на отражающем полу пассажиров при разной плотности расстановки на 1  и значения коэффициента n для разного влажностного режима помещения при температуре 20°С.
Остальные данные о КЗП наиболее распространенных материалов и конструкций ограждений приведены в приложении Д.
Необходимо отметить, что точность расчетов времени реверберации должна быть в пределах _0,05 с, а зона оптимумов времени реверберации должна находиться в трубке, указанной пунктиром на рисунке 4.1. При этом величины времени реверберации, большие зон оптимумов Т(V), могут приводить к избыточной гулкости зала станции, что неизбежно приведет к повышению шумового фона и потере разборчивости речи, а излишняя переглушенность зала станции, приводящая к значениям Т, меньшим допущенных зон оптимумов, может значительно увеличить стоимость строительства и стоимость электроакустического обеспечения зала станции. Точное следование зонам оптимума T(V) необходимо для диапазона 500-2000 Гц (рисунок 4.1); в диапазоне низких частот (125-250 Гц) допускается расхождение в пределах  _ 20%, однако предпочтение следует отдать снижению времени реверберации на низких частотах.
4.3.5 В случае значительного превалирования расчетного времени реверберации следует проводить вторую коррекцию проекта (пятый этап по рисунку 4.2) на предмет существенного увеличения фона звукопоглощения зала станции, определяемого формулой
. (4.12)
Отсюда требуемый добавочный фон звукопоглощения определяется следующим образом:
, (4.13)
где определяется в соответствии с формулой
. (4.14)
Имея данные о необходимом путем подбора соответствующих КЗП, типа, количества и мест размещения звукопоглощающей отделки, методом последовательных приближений следует обеспечить достижение .
Необходимо отметить, что расчет времени реверберации по формулам (4.10) - (4.14) справедлив для помещений станций с диффузным звуковым полем, имеющим равномерное распределение звуковых потоков по всем возможным направлениям их прихода, и единый акустический объем зала станции. Диффузность поля существенно нарушается при явной диспропорциональности зала станции (длинные залы станций с низкими потолками), а также при наличии гладких отражающих поверхностей большой площади, приводящих к фокусировке звука (например, сводчатый потолок с центром кривизны, близким к плоскости пола). Такая конфигурация ограждений может привести к вырождению времени реверберации по разным модам и направлениям и сделать неэффективным акустическую отделку отдельных ограждений (например, стен). Другой опасностью необработанных акустически длинных залов станций является наличие в них плоскопараллельных участков большой площади (например, стен открытых платформ), могущих создавать эффект флаттера - порхающего эха, особенно наглядного при некоторой заглушенности потолка. Вследствие этого даже введение формально правильно рассчитанной, но неправильно распределенной по ограждениям звукопоглощающей отделки может привести к существенным нарушениям равномерности звуковых потоков в зале станции, избыточному шумовому фону и, особенно, падению разборчивости речевой информации. Во избежание указанных дефектов акустическую обработку зала станции рекомендуется проводить в следующей последовательности:
1) эффективная отделка звукопоглощающей облицовкой стен и сводов над платформами станции (рисунок 4.3);
2) эффективная отделка верхних поверхностей и сводов массивных пилонов, отделяющих платформы от центрального зала станции;
3) эффективное членение различными выступами и кессонами звукоотражающего потолка над центральной частью зала станции (если по данным расчета на нем не требуется размещение звукопоглощающей отделки), причем для увеличения рассеяния во всем диапазоне звуковых частот членения должны быть апериодическими и, по крайней мере, хотя бы часть из них должна иметь размеры не менее 0,5-1,0 м по шагу сетки кессонов и 20-30 см по ширине и глубине;
4) введение, в случае необходимости, звукопоглощающей отделки также и в центральную часть, в первую очередь на потолок зала станции, совмещенную с элементами членений. Здесь возможно также применение объемных звукопоглотителей.
В случае разделения общего воздушного объема зала станции на три акустически связанных объема при площади лицевых ограждений пилонов более 30% площади проемов, процесс реверберации не может быть описан единой экспоненциальной кривой и, следовательно, формула (4.10) не может быть использована в прямом виде для описания хода отзвука единообразно во всем объеме зала станции. При этих условиях процесс реверберации в каждом из раздельных объемов (посадочные платформы и центральный зал станции) описывается следующими формулами (каждый из раздельных объемов условно назван по номерам: 1-м и 2-м):
(4.15)