В газовый хроматограф вводят раствор десорбированной пробы такого же фиксированного объема. По градуировочному графику определяют значение массовой концентрации аналита в десорбированной пробе. Пробы, используемые для определения эффективности десорбции, и холостые пробы анализируют тем же самым способом.
Соответствие времени удерживания, полученного на отдельной колонке, не должно быть единственным критерием идентичности. Индексы удерживания на фазах ВР-1 и ВР-10 для приблизительно 160 ЛОС приведены в приложении J. Они могут быть использованы для определения порядка элюирования на этих фазах или эквивалентных им фазах, однако не являются окончательными, так как точные значения зависят от режима температурного программирования, расхода газа-носителя и других факторов.
Если контрольная секция содержит более 10% количества аналита, то пробу отбраковывают как недостоверную.
7.3 Определение эффективности десорбции
Эффективность десорбции D ЛОС зависит от типа и партии используемого сорбента. Поэтому для каждого типа сорбента и каждого аналита необходимо определить D во всем диапазоне измерений массовой концентрации аналита в пробе. Пробы подготавливают в соответствии с 4.6 и анализируют в соответствии с 7.2. Подготавливают не менее трех проб для каждого уровня массовой концентрации. Таким образом, D представляет собой отношение количества извлеченного вещества к количеству введенного вещества.
Альтернативой методике введения жидкости шприцем (см. 4.6) является метод фазовых равновесий, заключающийся в добавлении точно известных объемов градуировочных растворов в неиспользованные чистые пробоотборные устройства и последующем определении разности концентраций до и после добавления.
Если данные по эффективности десорбции могут быть представлены в виде однородной совокупности, например с помощью критерия Бартлетта, то D вычисляют как среднее суммарное значение. В ином случае данные анализируют и определяют возможность построения на их основе модели с использованием уравнения сглаженной нелинейной кривой. При этом D увеличивается пропорционально отношению массы аналита к массе сорбента. В таких случаях D оценивают с использованием этой кривой.
Если D при заданном уровне ввода составляет менее 0,75 (75%), то результат анализа пробы, соответствующий этому уровню, бракуют (но в этом случае см. примечание 2).
Примечания
1 Для отдельных соединений могут быть использованы значения D, указанные производителем. Действительные значения всегда следует определять во время анализа. Эффективность десорбции зависит от массы соединения, загружаемого в сорбционную трубку; колебания обычно значительны в тех случаях, когда среднее значение составляет менее 90%.
2 Если смеси неполярных аналитов десорбируют чистым сероуглеродом, то взаимное влияние их содержаний на D обычно незначительно. Если состав смеси полярных и неполярных аналитов приблизительно известен, то значения D определяют с использованием подобной смеси. Иногда, используя один растворитель для десорбции, невозможно добиться эффективности десорбции более 75% для всех компонентов подобной смеси. Если может быть установлено постоянство D и отсутствует более подходящий растворитель, то принимают полученную эффективность десорбции, хотя по возможности предпочтение отдают отбору второй пробы и оптимизации условий десорбции полярных и неполярных аналитов.
3 При использовании методов введения жидкости шприцем и фазовых равновесий может не учитываться высокая влажность, имевшая место во время отбора проб. Адсорбированный водяной пар является фактором, который может быть воспроизведен добавлением воды к сорбенту. Влияние влаги должно быть исследовано, когда отбираются растворимые в воде соединения при высокой влажности воздуха.
4 Метод фазовых равновесий может привести к получению некорректных значений D [4] - [7].
7.4 Определение скорости поглощения
Скорости диффузионного поглощения некоторых типов пробоотборных устройств приведены в приложении В. Данные приблизительно по 200 соединениям были взяты из литературных источников [8] - [13], предоставленных производителями. Эти скорости относятся к условиям (25°С, 101 кПа), если не установлено иное. Некоторые значения скоростей приведены с учетом поправки на эффективность десорбции. Скорости поглощения, оцененные по типу С, были рассчитаны производителями с использованием геометрических констант и коэффициентов диффузии, определенных экспериментально [14] или оцененных по эмпирическим уравнениям [15] - [18].
Если скорость поглощения для конкретного соединения или устройства неизвестна, то ее определяют экспериментально. В течение определенного периода времени пробоотборные устройства экспонируют в градуировочной газовой смеси (см. 4.4.8), содержащей определяемое соединение или соединения. Значения массовой концентрации и времени экспонирования должны быть типичными для предполагаемого использования пробоотборного устройства. Проводят анализ отобранных проб в соответствии с 7.2 и вычисляют скорость диффузионного отбора проб как отношение собранной массы к произведению объемной доли отобранного вещества на время отбора*(5). Формула (7) может быть использована для пересчета значения на кубические сантиметры в минуту ( ). Более подробная методика приведена в ЕН 838.
На скорость поглощения пробоотборного устройства движение воздуха влияет незначительно при условии, что скорость воздуха превышает пороговое значение, зависящее от конструкции пробоотборного устройства. Обычно для работы с пробоотборными устройствами, указанными в приложениях Е - J, скорость воздуха должна быть не менее 0,1 м/с. Другие пробоотборные устройства могут иметь другие характеристики [19]. Специальные рекомендации должны содержаться в документации производителя.
Для идеального диффузионного пробоотборного устройства зависимость скорости поглощения U от абсолютной температуры и давления определяется зависимостью от них коэффициента диффузии для аналита. Последняя задается уравнением
, (1)
где .
Следовательно, зависимость U, или эквивалентные единицы, задается уравнением
. (2)
Если выражено в пикограммах на миллиардную долю-минуту, или эквивалентных единицах (см. 8.3), то зависимость задается уравнением
. (3)
В последнем случае при изменении температуры на 1 К будет изменяться приблизительно от 0,2% до 0,4%. В случае неидеального пробоотборного устройства, температурная зависимость может быть компенсирована температурной зависимостью коэффициента сорбции аналита. В любом случае для правильного применения формул (4) и (5) (см. раздел 8) необходимо, чтобы средняя температура и давление в период отбора проб были известны.
8 Вычисление результатов
8.1 Общие положения
Для логарифмически преобразованных величин зависимости десятичного логарифма площади пика аналита строят градуировочный график с учетом поправки на уровень холостых показаний по вертикальной оси от десятичного логарифма массовой концентрации аналита в микрограммах на миллилитр во вводимой аликвоте градуировочных растворов смеси аналитов.
Примечание - Другие методы подгонки по градуировочным точкам градуировочных графиков, такие как линейные, экспоненциальные или полиномиальные, более или менее применимы в зависимости от линейности выходного сигнала детектора и доступности программного обеспечения.
8.2 Массовая концентрация аналита
Массовую концентрацию аналита в отобранном воздухе , , вычисляют по формуле
, (4)
где - масса аналита в реальной пробе (основная секция), определенная в соответствии с 7.2, мг;
- масса аналита в реальной пробе (контрольная секция, если используется), определенная в соответствии с 7.2, мг;
- масса аналита в холостой пробе, мг;
D - эффективность десорбции при уровне загрузки пробоотборного устройства, соответствующем , определенная в соответствии с 7.3, доля;
U - скорость диффузионного поглощения, (см. приложение В или 7.4);
t - время экспонирования, мин.
Используемое значение U должно относиться к температуре воздуха и давлению при отборе проб (см. 7.4).
Если необходимо привести значение массовой концентрации к определенным условиям (например, 25°С и 101 кПа), то применяют формулу
, (5)
где - массовая концентрация аналита в отобранном воздухе, приведенная к определенным условиям, ;
р - давление отбираемого воздуха, кПа;
Т - температура отбираемого воздуха, °С.